超级电容器
电容
材料科学
纳米孔
比表面积
法拉第效率
储能
碳纤维
纳米技术
化学工程
电解质
复合材料
化学
电极
复合数
工程类
物理
量子力学
物理化学
催化作用
功率(物理)
有机化学
作者
Debendra Acharya,Ishwor Pathak,Alagan Muthurasu,Roshan Mangal Bhattarai,Taewoo Kim,Tae Hoon Ko,Syafiqah Saidin,Kisan Chhetri,Hak Yong Kim
标识
DOI:10.1016/j.est.2023.106992
摘要
In situ transmogrification is one of the most promising ways to synthesize positrode materials using a chemical treatment approach under optimal conditions for supercapacitor applications. The nickel salt concentration plays a vital role in the complete transmogrification of Fe-MOFs@PCNFs into Ni-Fe-OH@PCNFs (positrode). Herein, we successfully transform the tetragonal Fe-MOFs@PCNFs structure into pellet-like Ni-Fe-OH@PCNFs via in situ transmogrification under fixed temperature and pressure. The obtained Ni-Fe-OH@PCNFs-1 possess a unique porous architecture with a large surface area (74.3 m2g−1), which facilitates ion relocation and electron movement within the materials during charging/discharging. Owing to the limited surface area of electroactive materials, the double transition metal hydroxides (Ni-Fe-OH@PCNFs-D) synthesized directly (i.e., by employing two metal salts instantaneously) suffer a rapid decline in capacitance during cyclic stability test. The Ni-Fe-OH@PCNFs-1 electrode generated from Fe-MOFs@PCNFs has excellent cycling stability with ~86.7% capacitance retention and ~ 91.3% coulombic efficiency after 10,000 cycles at 10 A g−1. It also exhibits a remarkable specific capacitance of 1528 F g−1 at 1 A g−1. Additionally, the asymmetric supercapacitors (Ni-Fe-OH@PCNFs-1//Fe2O3/NPC@PCNFs) exhibit a maximum energy density of 44.3 Wh kg−1 at a power density of 907 W kg−1). The results of this work suggest the possibility of using MOF-derived nanoporous electrode materials and additional transition metal hydroxides for supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI