Prediction of Protein-Protein Interactions Using Vision Transformer and Language Model

计算机科学 人工智能 分类器(UML) 情态动词 机器学习 变压器 深度学习 特征向量 模式 模态(人机交互) 模式识别(心理学) 工程类 社会学 电压 化学 高分子化学 电气工程 社会科学
作者
Kanchan Jha,Sriparna Saha,Sourav Karmakar
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 3215-3225 被引量:2
标识
DOI:10.1109/tcbb.2023.3248797
摘要

The knowledge of protein-protein interaction (PPI) helps us to understand proteins' functions, the causes and growth of several diseases, and can aid in designing new drugs. The majority of existing PPI research has relied mainly on sequence-based approaches. With the availability of multi-omics datasets (sequence, 3D structure) and advancements in deep learning techniques, it is feasible to develop a deep multi-modal framework that fuses the features learned from different sources of information to predict PPI. In this work, we propose a multi-modal approach utilizing protein sequence and 3D structure. To extract features from the 3D structure of proteins, we use a pre-trained vision transformer model that has been fine-tuned on the structural representation of proteins. The protein sequence is encoded into a feature vector using a pre-trained language model. The feature vectors extracted from the two modalities are fused and then fed to the neural network classifier to predict the protein interactions. To showcase the effectiveness of the proposed methodology, we conduct experiments on two popular PPI datasets, namely, the human dataset and the S. cerevisiae dataset. Our approach outperforms the existing methodologies to predict PPI, including multi-modal approaches. We also evaluate the contributions of each modality by designing uni-modal baselines. We perform experiments with three modalities as well, having gene ontology as the third modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sean完成签到,获得积分10
刚刚
兜兜完成签到 ,获得积分10
刚刚
羊羊羊发布了新的文献求助10
1秒前
Rui完成签到,获得积分10
1秒前
bigger.b完成签到,获得积分10
1秒前
Nerissa完成签到,获得积分10
1秒前
Dr.Tang发布了新的文献求助10
1秒前
1秒前
田様应助笑点低蜜蜂采纳,获得10
1秒前
英俊的铭应助么系么系采纳,获得10
2秒前
ding应助寒冷的奇异果采纳,获得10
2秒前
lx发布了新的文献求助10
3秒前
舒适念真发布了新的文献求助10
3秒前
沉默哈密瓜完成签到 ,获得积分10
4秒前
身处人海完成签到,获得积分10
4秒前
Singularity应助暴躁的安柏采纳,获得10
4秒前
Singularity应助暴躁的安柏采纳,获得10
4秒前
大模型应助皓月千里采纳,获得10
4秒前
4秒前
Jim完成签到,获得积分10
5秒前
尼亚吉拉发布了新的文献求助10
5秒前
sternen发布了新的文献求助30
5秒前
5秒前
5秒前
迪迦驳回了所所应助
6秒前
猪猪hero发布了新的文献求助10
6秒前
热心芷烟完成签到,获得积分10
6秒前
6秒前
敏捷的猪猪侠完成签到,获得积分10
7秒前
7秒前
7秒前
咕噜仔发布了新的文献求助50
7秒前
诚c发布了新的文献求助10
8秒前
8秒前
饭宝发布了新的文献求助10
9秒前
SciGPT应助大胆的期待采纳,获得10
9秒前
奋斗夏烟完成签到,获得积分20
9秒前
气泡水完成签到 ,获得积分10
9秒前
rosy完成签到,获得积分10
10秒前
rjy完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678