Prediction of Protein-Protein Interactions Using Vision Transformer and Language Model

计算机科学 人工智能 分类器(UML) 情态动词 机器学习 变压器 深度学习 特征向量 模式 模态(人机交互) 模式识别(心理学) 工程类 社会学 电压 化学 高分子化学 电气工程 社会科学
作者
Kanchan Jha,Sriparna Saha,Sourav Karmakar
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 3215-3225 被引量:2
标识
DOI:10.1109/tcbb.2023.3248797
摘要

The knowledge of protein-protein interaction (PPI) helps us to understand proteins' functions, the causes and growth of several diseases, and can aid in designing new drugs. The majority of existing PPI research has relied mainly on sequence-based approaches. With the availability of multi-omics datasets (sequence, 3D structure) and advancements in deep learning techniques, it is feasible to develop a deep multi-modal framework that fuses the features learned from different sources of information to predict PPI. In this work, we propose a multi-modal approach utilizing protein sequence and 3D structure. To extract features from the 3D structure of proteins, we use a pre-trained vision transformer model that has been fine-tuned on the structural representation of proteins. The protein sequence is encoded into a feature vector using a pre-trained language model. The feature vectors extracted from the two modalities are fused and then fed to the neural network classifier to predict the protein interactions. To showcase the effectiveness of the proposed methodology, we conduct experiments on two popular PPI datasets, namely, the human dataset and the S. cerevisiae dataset. Our approach outperforms the existing methodologies to predict PPI, including multi-modal approaches. We also evaluate the contributions of each modality by designing uni-modal baselines. We perform experiments with three modalities as well, having gene ontology as the third modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CTT发布了新的文献求助10
刚刚
蚊蚊爱读书应助LONG采纳,获得10
刚刚
所所应助叶小文采纳,获得10
刚刚
zzzzz完成签到,获得积分10
刚刚
情怀应助聪明的依风采纳,获得10
刚刚
zwg发布了新的文献求助10
1秒前
枫叶发布了新的文献求助10
1秒前
大模型应助小熊采纳,获得10
1秒前
1秒前
zzz发布了新的文献求助10
1秒前
刘家成完成签到,获得积分10
2秒前
sinmon完成签到 ,获得积分10
2秒前
2秒前
脑洞疼应助彩霞采纳,获得10
3秒前
3秒前
Yuanyuan完成签到,获得积分10
3秒前
景浩完成签到,获得积分10
4秒前
情怀应助xueyy采纳,获得10
4秒前
4秒前
4秒前
an发布了新的文献求助10
5秒前
彭于晏应助百草采纳,获得10
5秒前
5秒前
专注的妍应助南终采纳,获得10
6秒前
星辰大海应助酷酷丹秋采纳,获得10
6秒前
隐形曼青应助大佑采纳,获得10
6秒前
小马儿完成签到 ,获得积分10
6秒前
张乔然发布了新的文献求助10
6秒前
6秒前
丘比特应助coatguy采纳,获得10
6秒前
丘比特应助牙牙采纳,获得10
7秒前
myj发布了新的文献求助10
7秒前
SciGPT应助三木采纳,获得10
8秒前
CTT完成签到,获得积分10
8秒前
asd_1发布了新的文献求助10
8秒前
研友_LNBeyL发布了新的文献求助10
8秒前
刘家成发布了新的文献求助10
9秒前
瓜瓜完成签到,获得积分10
9秒前
03发布了新的文献求助10
9秒前
繁星完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472829
求助须知:如何正确求助?哪些是违规求助? 4575043
关于积分的说明 14350202
捐赠科研通 4502414
什么是DOI,文献DOI怎么找? 2467157
邀请新用户注册赠送积分活动 1455101
关于科研通互助平台的介绍 1429246