Rapid nondestructive detecting of wheat varieties and mixing ratio by combining hyperspectral imaging and ensemble learning

高光谱成像 模式识别(心理学) 人工智能 数学 特征(语言学) 计算机科学 哲学 语言学
作者
Xinna Jiang,Youhua Bu,Lipeng Han,Jianping Tian,Xinjun Hu,Xiaobing Zhang,Dan Huang,Huibo Luo
出处
期刊:Food Control [Elsevier]
卷期号:150: 109740-109740 被引量:12
标识
DOI:10.1016/j.foodcont.2023.109740
摘要

Wheat is the main raw material for brewing Chinese liquor, and differences in the wheat varieties and mixing ratio will affect its quality and flavor. In this study, hyperspectral imaging (HSI) was combined with ensemble learning models for the classification and determination of the mixing ratio of wheat. The spectral information and textural and shape features of each wheat grain were respectively extracted. The density-based spatial clustering of applications with noise (DBSCAN) algorithm was used to remove abnormal data, and Savitzky-Golay combined multiplicative scatter correction (SG-MSC) was used to pre-process the spectra of the wheat samples. The characteristic wavelengths were then extracted using the competitive adaptive reweighted sampling (CARS) algorithm, and the classification effects of BP-Adaboost models were compared when using feature spectral data, image features, and fusion data as the input. The recognition effects and visualization of the validation set proved the optimal classification of feature spectral data fused with shape features; the average accuracy was 92.29% and the maximum deviation range of mixing ratio prediction was 5%. With the addition of wheat classification categories, this method still achieved excellent results. The results prove the feasibility of using fusion data with HSI combined with ensemble learning models for the classification and mixing ratio detection of wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助qifeng采纳,获得10
1秒前
1秒前
还单身的绮梅完成签到,获得积分10
2秒前
2秒前
Ninth发布了新的文献求助10
2秒前
lxlnb完成签到,获得积分10
3秒前
4秒前
souir发布了新的文献求助10
6秒前
米酒发布了新的文献求助10
6秒前
6秒前
7秒前
胡砚之发布了新的文献求助10
7秒前
11秒前
Henry发布了新的文献求助10
11秒前
11秒前
Sun发布了新的文献求助10
12秒前
无敌鱼发布了新的文献求助10
14秒前
15秒前
CipherSage应助ardejiang采纳,获得10
16秒前
小北笙er发布了新的文献求助10
17秒前
LDY发布了新的文献求助10
17秒前
哭泣斑马完成签到,获得积分10
17秒前
酷波er应助Tomin采纳,获得10
17秒前
机灵水卉完成签到 ,获得积分10
18秒前
田様应助zt采纳,获得10
18秒前
18秒前
18秒前
可爱的函函应助米酒采纳,获得10
19秒前
褚沧海发布了新的文献求助10
20秒前
善学以致用应助小周采纳,获得10
20秒前
所所应助无敌鱼采纳,获得10
21秒前
整齐尔容发布了新的文献求助10
21秒前
22秒前
ddj完成签到 ,获得积分10
23秒前
桐桐应助孙伟健采纳,获得10
23秒前
00000完成签到,获得积分20
23秒前
24秒前
天天快乐应助mmyhn采纳,获得10
24秒前
24秒前
hl应助123采纳,获得10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608