A Family of Soil Water Retention Models Based on Sigmoid Functions

乙状窦函数 保水性 导水率 土壤水分 Pedotransfer函数 土壤科学 保水曲线 对数正态分布 大孔隙 数学 含水量 环境科学 地质学 岩土工程 统计 计算机科学 人工神经网络 化学 机器学习 介孔材料 生物化学 催化作用
作者
Peijun Li,Yuanyuan Zha,Bingxin Zuo,Yonggen Zhang
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (3) 被引量:5
标识
DOI:10.1029/2022wr033160
摘要

Abstract The soil water retention curve is the fundamental soil hydraulic property to characterize soil water movement and solute transport. Many efforts have been devoted in the past decades to developing models to describe soil water retention curves. However, most of them are empirical equations or assume that soil pore size distributions conform to a lognormal distribution. Yet, few effects have been undertaken to systematically propose and compare a series of possible alternative probability density functions to describe the sigmoid retention curves with parameters physically explainable. Here, we proposed a family of five soil water retention models based on sigmoid functions with parameters of clear physical implications coinciding with the statistical measures of soil pore size distribution. Compared with the widely used models (i.e., Brooks & Corey, 1964; Kosugi, 1996; van Genuchten, 1980), the proposed models have somewhat improved performances to characterize water retention data for a wide range of soil textures without introducing additional model parameters. Two of the proposed models are capable of characterizing the observed two local extrema in the moisture capacity curves. The associated unsaturated hydraulic conductivity models of the proposed soil water retention models are also derived, which show superior performance in characterizing the observed hydraulic conductivities compared with competing models, especially in macropore regimes. Additionally, we analyzed the parameter‐equivalent conversion between the proposed and the existing models, and a simple linear regression equation can be used to derive the parameters of the proposed models from the existing and other alternative different proposed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jack发布了新的文献求助10
1秒前
kevin发布了新的文献求助10
2秒前
5秒前
6秒前
彭于晏应助bird0912采纳,获得10
6秒前
Soda完成签到,获得积分10
6秒前
尔信完成签到 ,获得积分10
8秒前
11秒前
x1发布了新的文献求助10
11秒前
领导范儿应助moon采纳,获得10
12秒前
Aurora发布了新的文献求助10
14秒前
可爱的函函应助kevin采纳,获得10
15秒前
王博士应助suxin采纳,获得10
15秒前
派大星完成签到,获得积分10
16秒前
18秒前
希望天下0贩的0应助wqm采纳,获得10
19秒前
19秒前
19秒前
Orange应助uniphoton采纳,获得10
20秒前
饭团完成签到,获得积分10
20秒前
洁净绝山应助Kakaluote采纳,获得50
20秒前
21秒前
21秒前
科研通AI2S应助beiyangtidu采纳,获得50
23秒前
852应助孝顺的尔丝采纳,获得30
23秒前
23秒前
科研通AI2S应助高无怨采纳,获得10
24秒前
25秒前
wanglixia完成签到,获得积分10
25秒前
26秒前
研友_nEoMy8发布了新的文献求助30
26秒前
MaoTing发布了新的文献求助10
27秒前
28秒前
夏侯德东完成签到,获得积分10
28秒前
科研通AI2S应助呜呼啦呼采纳,获得10
28秒前
didoo发布了新的文献求助10
28秒前
31秒前
胖大海发布了新的文献求助10
31秒前
wangkinju发布了新的文献求助10
32秒前
ding应助后会无期采纳,获得10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244424
求助须知:如何正确求助?哪些是违规求助? 2888070
关于积分的说明 8251272
捐赠科研通 2556542
什么是DOI,文献DOI怎么找? 1385033
科研通“疑难数据库(出版商)”最低求助积分说明 649958
邀请新用户注册赠送积分活动 626054