摘要
PharmacogenomicsVol. 23, No. 17 EditorialCYP2C18: the orphan in the CYP2C familyPablo Zubiaur & Andrea GaedigkPablo Zubiaur https://orcid.org/0000-0002-6150-4320Department of Clinical Pharmacology, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Madrid, SpainDivision of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USASearch for more papers by this author & Andrea Gaedigk *Author for correspondence: E-mail Address: agaedigk@cmh.eduhttps://orcid.org/0000-0001-6968-1893Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USASchool of Medicine, University of Missouri–Kansas City, Kansas City, MO, USASearch for more papers by this authorPublished Online:4 Nov 2022https://doi.org/10.2217/pgs-2022-0142AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: CYP2C18CYP2C19pharmacogeneticsReferences1. https://cpicpgx.org/guidelines/Google Scholar2. Whirl-Carrillo M, Huddart R, Gong L et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol. Ther. 110(3), 563–572 (2021).Crossref, Medline, Google Scholar3. www.pharmgkb.org/pathway/PA145011113Google Scholar4. www.pharmgkb.org/pathway/PA153627759Google Scholar5. www.pharmgkb.org/pathway/PA152530846Google Scholar6. www.pharmgkb.org/pathway/PA145011113Google Scholar7. www.pharmgkb.org/pathway/PA166163705Google Scholar8. www.pharmgkb.org/pathway/PA166247041Google Scholar9. www.pharmgkb.org/pathway/PA166160830Google Scholar10. Dinh JC, Pearce RE, Van Haandel L, Gaedigk A, Leeder JS. Characterization of atomoxetine biotransformation and implications for development of PBPK models for dose individualization in children. Drug Metab. Dispos. 44(7), 1070–1079 (2016).Crossref, Medline, CAS, Google Scholar11. Läpple F, von Richter O, Fromm MF et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics 13(9), 565–575 (2003).Crossref, Medline, Google Scholar12. Gaedigk A, Casey ST, Whirl-Carrillo M, Miller NA, Klein TE. Pharmacogene Variation Consortium: a global resource and repository for pharmacogene variation. Clin. Pharmacol. Ther. 110(3), 542–545 (2021).Crossref, Medline, Google Scholar13. Gaedigk A, Ingelman-Sundberg M, Miller NA et al. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin. Pharmacol. Ther. 103(3), 399–401 (2018).Crossref, Medline, CAS, Google Scholar14. Sangkuhl K, Claudio-Campos K, Cavallari LH et al. PharmVar GeneFocus: CYP2C9. Clin. Pharmacol. Ther. 110(3), 662–676 (2021).Crossref, Medline, CAS, Google Scholar15. Botton MR, Whirl-Carrillo M, Del Tredici AL et al. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 109(2), 352–366 (2021).Crossref, Medline, Google Scholar16. Gaedigk A, Boone EC, Scherer SE et al. CYP2C8, CYP2C9, and CYP2C19 characterization using next-generation sequencing and haplotype analysis: a GeT-RM collaborative project. J. Mol. Diagn. 24(4), 337–350 (2022).Crossref, Medline, CAS, Google Scholar17. Bråten LS, Haslemo T, Jukic MM et al. A novel CYP2C haplotype associated with ultrarapid metabolism of escitalopram. Clin Pharmacol. Ther. 110(3), 786–793 (2021).Crossref, Medline, Google Scholar18. Kee PS, Maggo SDS, Kennedy MA et al. Omeprazole treatment failure in gastroesophageal reflux disease and genetic variation at the CYP2C locus. Front. Genet. 13, 869160 (2022).Crossref, Medline, CAS, Google Scholar19. www.ebi.ac.uk/Tools/psa/emboss_stretcher/Google Scholar20. www.proteinatlas.org/Google Scholar21. www.gtexportal.org/home/Google Scholar22. Uhlén M, Fagerberg L, Hallström BM et al. Tissue-based map of the human proteome. Science 347(6220), 1260419 (2015).Crossref, Medline, Google Scholar23. Wenzel C, Drozdzik M, Oswald S. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1180, 122891 (2021).Crossref, Medline, CAS, Google Scholar24. Takayama K, Ito K, Matsui A et al. In vivo gene expression profile of human intestinal epithelial cells: from the viewpoint of drug metabolism and pharmacokinetics. Drug Metab. Dispos. 49(3), 221–232 (2021).Crossref, Medline, CAS, Google Scholar25. Miyauchi E, Tachikawa M, Declèves X et al. Quantitative atlas of cytochrome P450, UDP-glucuronosyltransferase, and transporter proteins in jejunum of morbidly obese subjects. Mol. Pharm. 13(8), 2631–2640 (2016).Crossref, Medline, CAS, Google Scholar26. Wu Y, Chitranshi P, Loukotková L et al. Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells. Arch. Toxicol. 91(6), 2405–2423 (2017).Crossref, Medline, CAS, Google Scholar27. Fang WB, Lofwall MR, Walsh SL, Moody DE. Determination of oxycodone, noroxycodone and oxymorphone by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry in human matrices: in vivo and in vitro applications. J. Anal. Toxicol. 37(6), 337–344 (2013).Crossref, Medline, Google Scholar28. Yamane M, Kawashima K, Yamaguchi K et al. In vitro profiling of the metabolism and drug–drug interaction of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, using human liver microsomes, human hepatocytes, and recombinant human CYP. Xenobiotica 45(3), 230–238 (2015).Crossref, Medline, CAS, Google Scholar29. Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem. Pharmacol. 153, 196–204 (2018).Crossref, Medline, CAS, Google Scholar30. Maagdenberg H, Bierings MB, van Ommen CH et al. The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study. J. Thromb. Haemost. 16(9), 1732–1742 (2018).Crossref, Medline, CAS, Google Scholar31. Collins JM, Wang D. Regulation of CYP3A4 and CYP3A5 by a lncRNA: a potential underlying mechanism explaining the association between CYP3A4*1G and CYP3A metabolism. Pharmacogenet. Genomics 32(1), 16–23 (2022).Crossref, Medline, CAS, Google Scholar32. Tang X, Chen S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr. Drug Metab. 16(2), 86–96 (2015).Crossref, Medline, CAS, Google Scholar33. Yu D, Green B, Tolleson WH et al. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem. Pharmacol. 98(1), 215–223 (2015).Crossref, Medline, CAS, Google Scholar34. Zhang S-Y, Surapureddi S, Coulter S, Ferguson SS, Goldstein JA. Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol. Pharmacol. 82(3), 529–540 (2012).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Vol. 23, No. 17 STAY CONNECTED Metrics Downloaded 110 times History Received 23 September 2022 Accepted 26 September 2022 Published online 4 November 2022 Published in print November 2022 Information© 2022 Future Medicine LtdKeywordsCYP2C18CYP2C19pharmacogeneticsFinancial & competing interests disclosureP Zubiaur is supported by Universidad Autónoma de Madrid, Margarita Salas contract, grants for the requalification of the Spanish university system. A Gaedigk is the director of the Pharmacogene Variation (PharmVar) Consortium and CPIC member. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download