Carbon layer encapsulation strategy for designing multifunctional core-shell nanorod aerogels as high-temperature thermal superinsulators

纳米棒 材料科学 复合材料 保温 热的 热导率 纳米技术 热阻 碳纳米管 热稳定性 气凝胶 化学工程 图层(电子) 气象学 工程类 物理
作者
Fengqi Liu,Chenbo He,Yonggang Jiang,Yaping Yang,Fei Peng,Lanfang Liu,Jing Men,Junzong Feng,Liangjun Li,G.H. Tang,Jian Feng,Jian Feng,Jian Feng
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:455: 140502-140502 被引量:62
标识
DOI:10.1016/j.cej.2022.140502
摘要

Aerogels have been considered as attractive candidates for spacecraft thermal protection systems. However, constructing lightweight aerogels with better mechanical strength, higher temperature resistance and lower high-temperature thermal conductivity, whether based on nanoparticles or nanofibers, is still a great challenge. Moreover, to avoid performance degradation caused by moisture absorption, insulating aerogels usually suffer from complex post-processing to obtain superhydrophobicity, which also cannot be guaranteed once the surface breaks down. Herein, a carbon layer encapsulation (CLE) strategy is proposed to resolve the above-mentioned conundrums in a simple way. Thanks to the collaboration of structural design and theoretical simulations, the tailored Al2O3-carbon core–shell nanorod aerogels demonstrate excellent comprehensive properties of low density (as low as 0.086 g·cm−3), outstanding stiffness (a specific compressive strength of 69.83 kN·m·kg−1), bionic abrasion-durable superhydrophobicity (WCA 156° after 1000 abrasion cycles), ultra-high thermal stability (over 1500 °C in argon and over 1400 °C in air) and high-temperature thermal superinsulating performance (0.065 W·m−1·K−1 at 1200 ℃). The synergy of ultrafine Al2O3 nanorods and carbon layers with suitable thickness not only forms a robust lotus leaf-like structure, but also enables the obtained aerogels to exhibit much superior thermal insulation properties than reported Al2O3-based aerogels. The significant increase in temperature resistance induced by lattice distortion is also an interesting phenomenon that has been investigated in detail. This novel strategy provides a fresh perspective for the preparation of multifunctional thermal high-temperature superinsulators applicable to spacecraft thermal protection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sharkmelon发布了新的文献求助50
1秒前
1秒前
万物更始完成签到,获得积分10
1秒前
wanci应助研友_890wGZ采纳,获得10
2秒前
科研通AI6.1应助飘零枫叶采纳,获得10
2秒前
典雅的酬海完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
bkagyin应助玛卡巴卡采纳,获得10
6秒前
科研通AI2S应助wxy采纳,获得10
7秒前
无奈灵煌发布了新的文献求助10
7秒前
fufufu123完成签到 ,获得积分10
8秒前
sui发布了新的文献求助10
8秒前
苏ss发布了新的文献求助10
9秒前
爱壹帆完成签到,获得积分10
10秒前
jerry完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
华仔应助星辰坠于海采纳,获得10
12秒前
Zhi完成签到,获得积分10
13秒前
yyy完成签到 ,获得积分10
14秒前
14秒前
啊呀呀完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
11发布了新的文献求助10
16秒前
17秒前
17秒前
雨0926发布了新的文献求助20
18秒前
量子星尘发布了新的文献求助10
18秒前
MillionXie发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
椰汁完成签到 ,获得积分10
22秒前
Owen应助舒服的踏歌采纳,获得10
23秒前
梵凡完成签到,获得积分10
23秒前
小青椒应助531采纳,获得30
25秒前
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749404
求助须知:如何正确求助?哪些是违规求助? 5458546
关于积分的说明 15363524
捐赠科研通 4888849
什么是DOI,文献DOI怎么找? 2628731
邀请新用户注册赠送积分活动 1577009
关于科研通互助平台的介绍 1533742