PET and MRI image fusion based on a dense convolutional network with dual attention

计算机科学 编码器 卷积神经网络 人工智能 特征(语言学) 模式识别(心理学) 图像融合 图像(数学) 编码(内存) 对偶(语法数字) 相似性(几何) 信息丢失 计算机视觉 艺术 哲学 语言学 文学类 操作系统
作者
Bicao Li,Jenq–Neng Hwang,Zhoufeng Liu,Chunlei Li,Zongmin Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106339-106339 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.106339
摘要

The fusion techniques of different modalities in medical images, e.g., Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), are increasingly significant in many clinical applications by integrating the complementary information from different medical images. In this paper, we propose a novel fusion model based on a dense convolutional network with dual attention (CSpA-DN) for PET and MRI images. In our framework, an encoder composed of the densely connected neural network is constructed to extract features from source images, and a decoder network is employed to generate the fused image from these features. Simultaneously, a dual-attention module is introduced in the encoder and decoder to further integrate local features along with their global dependencies adaptively. In the dual-attention module, a spatial attention block is leveraged to extract features of each point from encoder network by a weighted sum of feature information at all positions. Meanwhile, the interdependent correlation of all image features is aggregated via a module of channel attention. In addition, we design a specific loss function including image loss, structural loss, gradient loss and perception loss to preserve more structural and detail information and sharpen the edges of targets. Our approach facilitates the fused images to not only preserve abundant functional information from PET images but also retain rich detail structures of MRI images. Experimental results on publicly available datasets illustrate the superiorities of CSpA-DN model compared with state-of-the-art methods according to both qualitative observation and objective assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研轮回发布了新的文献求助10
1秒前
小蘑菇应助Morii1999采纳,获得10
3秒前
十七应助WHY采纳,获得10
3秒前
3秒前
3秒前
李爱国应助summer采纳,获得10
3秒前
科研12345完成签到,获得积分10
4秒前
舒心远侵发布了新的文献求助10
5秒前
沐沐1003发布了新的文献求助10
5秒前
王吨吨发布了新的文献求助10
5秒前
5秒前
诸葛翼德完成签到,获得积分10
7秒前
7秒前
mmyhn发布了新的文献求助10
9秒前
10秒前
11秒前
wpeng发布了新的文献求助10
11秒前
11秒前
12秒前
梁其杰完成签到,获得积分10
13秒前
13秒前
十七应助沐沐1003采纳,获得10
13秒前
14秒前
晓医儿完成签到,获得积分20
14秒前
CipherSage应助无语采纳,获得10
15秒前
16秒前
16秒前
学术芽完成签到,获得积分10
16秒前
17秒前
柠檬萌发布了新的文献求助10
17秒前
拼搏巧曼发布了新的文献求助10
18秒前
lym97发布了新的文献求助10
18秒前
18秒前
summer发布了新的文献求助10
18秒前
19秒前
mmyhn发布了新的文献求助10
19秒前
大碗完成签到 ,获得积分10
20秒前
小哑巴发布了新的文献求助20
21秒前
saveMA完成签到,获得积分10
21秒前
xwp发布了新的文献求助10
22秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392344
求助须知:如何正确求助?哪些是违规求助? 3003047
关于积分的说明 8807005
捐赠科研通 2689807
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681498
邀请新用户注册赠送积分活动 674316