A correlation-based feature analysis of physical examination indicators can help predict the overall underlying health status using machine learning

相关性 疾病 全国健康与营养检查调查 体格检查 医学 人口 特征(语言学) 机器学习 人工智能 计算机科学 病理 环境卫生 数学 内科学 语言学 哲学 几何学
作者
Haixin Wang,Ping Shuai,Yanhui Deng,Jiyun Yang,Yi Shi,Dongyu Li,Yong Tao,Yuping Liu,Lulin Huang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:4
标识
DOI:10.1038/s41598-022-20474-3
摘要

Abstract As a systematic investigation of the correlations between physical examination indicators (PEIs) is lacking, most PEIs are currently independently used for disease warning. This results in the general physical examination having limited diagnostic values. Here, we systematically analyzed the correlations in 221 PEIs between healthy and 34 unhealthy statuses in 803,614 individuals in China. Specifically, the study population included 711,928 healthy participants, 51,341 patients with hypertension, 12,878 patients with diabetes, and 34,997 patients with other unhealthy statuses. We found rich relevance between PEIs in the healthy physical status (7662 significant correlations, 31.5%). However, in the disease conditions, the PEI correlations changed. We focused on the difference in PEIs between healthy and 35 unhealthy physical statuses and found 1239 significant PEI differences, suggesting that they could be candidate disease markers. Finally, we established machine learning algorithms to predict health status using 15–16% of the PEIs through feature extraction, reaching a 66–99% accurate prediction, depending on the physical status. This new reference of the PEI correlation provides rich information for chronic disease diagnosis. The developed machine learning algorithms can fundamentally affect the practice of general physical examinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJY完成签到,获得积分10
刚刚
刚刚
pluto应助lull采纳,获得10
1秒前
pluto应助lull采纳,获得10
1秒前
科研通AI2S应助lull采纳,获得10
1秒前
英姑应助林中探幽采纳,获得10
1秒前
1秒前
buno应助AOI0504采纳,获得10
1秒前
我是老大应助叶子采纳,获得10
2秒前
2秒前
2秒前
3秒前
CodeCraft应助安详的玲采纳,获得10
3秒前
3秒前
深情安青应助wilaken采纳,获得10
3秒前
3秒前
blhbpjn完成签到 ,获得积分10
4秒前
半岛铁盒发布了新的文献求助10
5秒前
5秒前
aura发布了新的文献求助10
6秒前
Tenacity发布了新的文献求助10
7秒前
就这完成签到,获得积分10
7秒前
Nikita完成签到,获得积分10
7秒前
ocean发布了新的文献求助10
9秒前
10秒前
10秒前
tttccc完成签到,获得积分20
10秒前
11秒前
深情安青应助下雨了采纳,获得10
11秒前
13秒前
半岛铁盒完成签到,获得积分10
13秒前
13秒前
CodeCraft应助自由又夏采纳,获得10
14秒前
酷波er应助一只菜谱采纳,获得10
14秒前
威武冷雪发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
龙龙发布了新的文献求助10
15秒前
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232703
求助须知:如何正确求助?哪些是违规求助? 2879469
关于积分的说明 8211416
捐赠科研通 2546954
什么是DOI,文献DOI怎么找? 1376476
科研通“疑难数据库(出版商)”最低求助积分说明 647624
邀请新用户注册赠送积分活动 623003