A correlation-based feature analysis of physical examination indicators can help predict the overall underlying health status using machine learning

相关性 疾病 全国健康与营养检查调查 体格检查 医学 人口 特征(语言学) 机器学习 人工智能 计算机科学 病理 环境卫生 数学 内科学 哲学 语言学 几何学
作者
Haixin Wang,Ping Shuai,Yanhui Deng,Jiyun Yang,Yi Shi,Dongyu Li,Yong Tao,Yuping Liu,Lulin Huang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:4
标识
DOI:10.1038/s41598-022-20474-3
摘要

Abstract As a systematic investigation of the correlations between physical examination indicators (PEIs) is lacking, most PEIs are currently independently used for disease warning. This results in the general physical examination having limited diagnostic values. Here, we systematically analyzed the correlations in 221 PEIs between healthy and 34 unhealthy statuses in 803,614 individuals in China. Specifically, the study population included 711,928 healthy participants, 51,341 patients with hypertension, 12,878 patients with diabetes, and 34,997 patients with other unhealthy statuses. We found rich relevance between PEIs in the healthy physical status (7662 significant correlations, 31.5%). However, in the disease conditions, the PEI correlations changed. We focused on the difference in PEIs between healthy and 35 unhealthy physical statuses and found 1239 significant PEI differences, suggesting that they could be candidate disease markers. Finally, we established machine learning algorithms to predict health status using 15–16% of the PEIs through feature extraction, reaching a 66–99% accurate prediction, depending on the physical status. This new reference of the PEI correlation provides rich information for chronic disease diagnosis. The developed machine learning algorithms can fundamentally affect the practice of general physical examinations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
1秒前
2秒前
研友_qZ6wg8发布了新的文献求助30
2秒前
沙拉酱发布了新的文献求助10
3秒前
七田皿发布了新的文献求助10
3秒前
3秒前
4秒前
猫和老鼠发布了新的文献求助20
4秒前
顺利毕业发布了新的文献求助10
5秒前
搜集达人应助漾漾采纳,获得10
5秒前
烟花应助jack采纳,获得10
5秒前
6秒前
科研通AI6应助suansuan采纳,获得10
6秒前
6秒前
灵巧大地完成签到,获得积分10
6秒前
6秒前
喵咪发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
xxxwww完成签到,获得积分10
7秒前
葵小葵完成签到,获得积分10
7秒前
7秒前
任性的飞雪完成签到,获得积分10
7秒前
7秒前
天黑黑发布了新的文献求助10
8秒前
lailai007发布了新的文献求助10
8秒前
Barium发布了新的文献求助10
8秒前
8秒前
luk发布了新的文献求助10
8秒前
ding应助小猪采纳,获得10
9秒前
洁净笙完成签到,获得积分20
9秒前
爆米花应助紫苏桃子姜采纳,获得30
9秒前
9秒前
SciGPT应助jie采纳,获得10
9秒前
10秒前
10秒前
人间烟火完成签到,获得积分10
10秒前
Orange应助饱满芷卉采纳,获得10
10秒前
小耿完成签到 ,获得积分20
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240