已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel hybrid deep network for diagnosing water status in wheat crop using IoT-based multimodal data

RGB颜色模型 计算机科学 卷积神经网络 色调 人工智能 深度学习 精准农业 灰度 遥感 农业工程 计算机视觉 像素 工程类 农业 生物 地质学 生态学
作者
Osama Elsherbiny,Lei Zhou,Yong He,Zhengjun Qiu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107453-107453 被引量:12
标识
DOI:10.1016/j.compag.2022.107453
摘要

Automatic detection of plant water status is a significant challenge in agriculture as it is a crucial regulator of growth, productivity, quality, and sustainability. As a result, accurate monitoring of the plant's water condition has become imperative. Internet of Things (IoT) solutions based on specific sensor data acquisition and intelligent processing can assist water users for precise irrigation by providing accurate, consistent, and fast results. This paper aims to present a hybrid deep learning approach based on the combination of a convolutional neural network (CNN) and long short-term memory (LSTM) for automatically identifying the water state of wheat. The intended scheme used IoT-based data transmission devices such as a digital camera, soil moisture, wind speed, air temperature, and relative humidity. These environmental factors (EF) were recorded during the plant image capture. A total of 876 images of wheat plants were collected under different water deficit levels. A data augmentation approach was applied to expand the size of the training dataset to 5256 images. Various types of image color modes for example CMYK (cyan-magenta-yellow-black), HSV (hue-saturation-value), RGB (red-greenblue), and grayscale were evaluated with our proposed methods. The experimental results indicated that the combined CNNRGB-LSTMEF-CNNEF deep network based on features from both RGB images, climatic conditions, and soil moisture performed better than features from individual RGB images. Its outputs of validation accuracy, classification precision, recall, F-measure, and intersection over union are 100% with a loss of 0.0012. The proposed system behavior is very encouraging to develop our methodology with other crops in the future. The designed framework can serve the agricultural community to detect the water stress of plants before the critical level of growth and make timely management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐至上发布了新的文献求助10
3秒前
wcy完成签到 ,获得积分10
5秒前
10秒前
13秒前
MROU完成签到,获得积分10
14秒前
huenguyenvan完成签到,获得积分10
14秒前
藤椒辣鱼应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
乐至上完成签到,获得积分10
15秒前
藤椒辣鱼应助科研通管家采纳,获得30
15秒前
Moonlight完成签到,获得积分10
16秒前
roy完成签到,获得积分10
16秒前
桐桐应助陪你长大采纳,获得10
18秒前
21秒前
27秒前
wei关闭了wei文献求助
30秒前
34秒前
abc完成签到 ,获得积分10
35秒前
懒羊羊完成签到 ,获得积分10
39秒前
winkyyang完成签到 ,获得积分0
41秒前
毛豆应助syjssxwz采纳,获得10
43秒前
莫冰雪完成签到 ,获得积分10
46秒前
高贵冬卉完成签到 ,获得积分10
51秒前
飞快的语蕊完成签到,获得积分10
53秒前
55秒前
55秒前
高贵冬卉发布了新的文献求助10
1分钟前
1分钟前
梦回唐朝完成签到 ,获得积分10
1分钟前
CR7完成签到,获得积分10
1分钟前
woshizhengde关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
TKTATO发布了新的文献求助10
1分钟前
1分钟前
1分钟前
興崋完成签到 ,获得积分10
1分钟前
1分钟前
Dali完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455593
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022781
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502690
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387