Enhanced Diagnosis of Plaque Erosion by Deep Learning in Patients With Acute Coronary Syndromes

卷积神经网络 医学 接收机工作特性 光学相干层析成像 深度学习 急性冠脉综合征 变压器 人工智能 放射科 计算机科学 心脏病学 内科学 心肌梗塞 工程类 电压 电气工程
作者
Sangjoon Park,Makoto Araki,Ayako Nakajima,Hang Lee,Valentin Fuster,Jong Chul Ye,Ik-Kyung Jang
出处
期刊:Jacc-cardiovascular Interventions [Elsevier BV]
卷期号:15 (20): 2020-2031 被引量:2
标识
DOI:10.1016/j.jcin.2022.08.040
摘要

Acute coronary syndromes caused by plaque erosion might be potentially managed conservatively without stenting. Currently, the diagnosis of plaque erosion requires expertise in optical coherence tomographic (OCT) image interpretation. In addition, the current deep learning (DL) approaches for OCT image interpretation are based on a single frame, without integrating the information from adjacent frames.The aim of this study was to develop a novel DL model to facilitate an accurate diagnosis of plaque erosion.A novel "Transformer"-based DL model was developed that integrates information from adjacent frames emulating the cardiologists who review consecutive OCT frames to make a diagnosis and compared with the standard convolutional neural network (CNN) DL model. A total of 237,021 cross-sectional OCT images from 581 patients were used for training and internal validation, and 65,394 images from 292 patients from another dataset were used for external validation. Model performances were evaluated using the area under the receiver-operating characteristic curve (AUC).For the frame-level diagnosis of plaque erosion, the Transformer model showed superior performance than the CNN model, with an AUC of 0.94 compared with 0.85 in the external validation. For the lesion-level diagnosis, the Transformer model showed improved diagnostic performance compared with the CNN model, with an AUC of 0.91 compared with 0.84 in the external validation.This newly developed Transformer model will help cardiologists diagnose plaque erosion with high accuracy in patients with acute coronary syndromes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助尊敬的芷卉采纳,获得10
1秒前
逐梦ing完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
易安发布了新的文献求助10
3秒前
舒适斑马发布了新的文献求助10
4秒前
畅快毒娘发布了新的文献求助30
4秒前
5秒前
Singularity应助薛雨佳采纳,获得10
6秒前
天天快乐应助醒醒采纳,获得10
7秒前
小王发布了新的文献求助10
8秒前
8秒前
9秒前
千寻发布了新的文献求助10
10秒前
10秒前
科研通AI5应助1222采纳,获得20
13秒前
dongguoxia发布了新的文献求助10
14秒前
小菜鸡发布了新的文献求助10
14秒前
眯眯眼的衬衫应助shine0king采纳,获得10
14秒前
香蕉觅云应助nadeem采纳,获得10
16秒前
Hello应助呆头鹅采纳,获得10
16秒前
搜集达人应助江峰采纳,获得10
16秒前
Hello应助nbnbaaa采纳,获得10
16秒前
2311发布了新的文献求助10
16秒前
星辰大海应助不吃西瓜采纳,获得10
16秒前
FashionBoy应助笑面客采纳,获得10
18秒前
Fanny完成签到,获得积分10
19秒前
1222完成签到,获得积分10
19秒前
绝尘发布了新的文献求助20
20秒前
orixero应助千寻采纳,获得10
20秒前
可爱的函函应助勤奋大地采纳,获得10
20秒前
ergatoid完成签到,获得积分10
22秒前
one完成签到,获得积分10
23秒前
24秒前
KingLancet完成签到,获得积分0
24秒前
25秒前
怕黑初曼发布了新的文献求助10
26秒前
27秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519