支持向量机
计算机科学
光伏系统
断层(地质)
参数统计
算法
模式识别(心理学)
故障检测与隔离
发电机(电路理论)
优化算法
人工智能
数学
数学优化
功率(物理)
统计
工程类
地质学
物理
电气工程
地震学
执行机构
量子力学
作者
R. J. Koloko Koloko,Pierre Ele,R. Wamkeue,Achille Melingui
摘要
In this work, an innovative approach based on the estimation of the photovoltaic generator (GPV) parameters from the Bald Eagle Search (BES) optimization algorithm, associated with a support vector machine (SVM) classification algorithm, allowed to highlight a new tool for the classification of the signatures of shading and moisture PV defects. It recognizes signatures generated by the GPV in healthy and erroneous operation using the optimized parametric vector and classifies defects using the same optimized vector. The technique emphasizes the resilience of parameter estimate in terms of error on all parameters. The classification accuracy is 93%. The residuals between the estimated curve in healthy operation with a minimum error of the order of 10-4 and the one at fault are used as an indicator of faults.
科研通智能强力驱动
Strongly Powered by AbleSci AI