亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Indoor airflow field reconstruction using physics-informed neural network

气流 计算流体力学 人工神经网络 领域(数学) 计算机科学 边值问题 入口 边界(拓扑) 流量(数学) 模拟 人工智能 工程类 机械 机械工程 数学 航空航天工程 物理 数学分析 纯数学
作者
Chenghao Wei,Ryozo Ooka
出处
期刊:Building and Environment [Elsevier]
卷期号:242: 110563-110563 被引量:26
标识
DOI:10.1016/j.buildenv.2023.110563
摘要

Obtaining a detailed indoor airflow field is important for the accurate and efficient control of indoor environmental comfort. Traditional computational fluid dynamics (CFD) methods and CFD-based surrogate models are time-consuming and sometimes produce inaccurate results because of difficulties in reproducing accurate inlet boundary conditions. Artificial neural networks (ANN) can be utilized to reconstruct indoor airflow fields directly from measurement data without building a large inaccurate and time-consuming CFD database. However, as a purely data-driven method, a normal ANN can yield unphysical results. A physics-informed neural network (PINN) is one possible solution. In this study, a PINN was introduced to reconstruct an indoor airflow field basing on measurement data (without inlet boundary conditions), and compared with ANN. The results show that the PINN produced more physical results than the ANN and is more tolerant to a reduction in the number of measurement points. In specific cases, the mean errors of the PINN results for the 98-, 32, and 16 point cases were 89%, 79%, and 70% of those of the ANN results, respectively. The PINN showed practical application potential in cases where the amount of measured data was relatively small. Comparing to traditional CFD, PINN can reconstruct the detailed airflow field directly from measurement data, avoiding inaccurate simulation conditions. Meanwhile, PINN saved 42% calculation time, comparing to CFD. Moreover, there is a potential of PINN in using less time to apply a trained PINN to a new case by transfer learning, where however CFD needs to recalculate a new case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bushi完成签到 ,获得积分10
刚刚
刚刚
4秒前
4秒前
4秒前
orixero应助背后凌翠采纳,获得10
4秒前
保持客气完成签到,获得积分10
5秒前
ZZZ发布了新的文献求助10
6秒前
wangayting发布了新的文献求助10
6秒前
yy发布了新的文献求助10
8秒前
9秒前
欢歌笑语发布了新的文献求助10
9秒前
良夜眉峰完成签到,获得积分10
10秒前
FashionBoy应助wangayting采纳,获得10
13秒前
gggghhhh完成签到 ,获得积分10
13秒前
psykyo发布了新的文献求助30
16秒前
Rocks完成签到,获得积分10
22秒前
小蘑菇应助psykyo采纳,获得10
24秒前
马子茹发布了新的文献求助10
25秒前
26秒前
萝卜卷心菜完成签到 ,获得积分10
30秒前
背后凌翠发布了新的文献求助10
31秒前
yy完成签到 ,获得积分10
32秒前
英俊的铭应助yy采纳,获得10
37秒前
Lucas应助ZZZ采纳,获得10
39秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
39秒前
清爽冬莲完成签到 ,获得积分10
39秒前
40秒前
领导范儿应助坚强的唇膏采纳,获得10
40秒前
涛涛完成签到,获得积分10
43秒前
tt完成签到 ,获得积分10
44秒前
冷酷飞飞完成签到 ,获得积分10
44秒前
呜呜呜发布了新的文献求助10
46秒前
52秒前
柳crystal完成签到,获得积分10
53秒前
55秒前
呜呜呜完成签到,获得积分10
57秒前
Sunshine完成签到,获得积分10
59秒前
Privacy完成签到 ,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787957
求助须知:如何正确求助?哪些是违规求助? 5703228
关于积分的说明 15473130
捐赠科研通 4916169
什么是DOI,文献DOI怎么找? 2646223
邀请新用户注册赠送积分活动 1593876
关于科研通互助平台的介绍 1548209