Indoor airflow field reconstruction using physics-informed neural network

气流 计算流体力学 人工神经网络 领域(数学) 计算机科学 边值问题 入口 边界(拓扑) 流量(数学) 模拟 人工智能 工程类 机械 机械工程 数学 航空航天工程 物理 数学分析 纯数学
作者
Chenghao Wei,Ryozo Ooka
出处
期刊:Building and Environment [Elsevier]
卷期号:242: 110563-110563 被引量:12
标识
DOI:10.1016/j.buildenv.2023.110563
摘要

Obtaining a detailed indoor airflow field is important for the accurate and efficient control of indoor environmental comfort. Traditional computational fluid dynamics (CFD) methods and CFD-based surrogate models are time-consuming and sometimes produce inaccurate results because of difficulties in reproducing accurate inlet boundary conditions. Artificial neural networks (ANN) can be utilized to reconstruct indoor airflow fields directly from measurement data without building a large inaccurate and time-consuming CFD database. However, as a purely data-driven method, a normal ANN can yield unphysical results. A physics-informed neural network (PINN) is one possible solution. In this study, a PINN was introduced to reconstruct an indoor airflow field basing on measurement data (without inlet boundary conditions), and compared with ANN. The results show that the PINN produced more physical results than the ANN and is more tolerant to a reduction in the number of measurement points. In specific cases, the mean errors of the PINN results for the 98-, 32, and 16 point cases were 89%, 79%, and 70% of those of the ANN results, respectively. The PINN showed practical application potential in cases where the amount of measured data was relatively small. Comparing to traditional CFD, PINN can reconstruct the detailed airflow field directly from measurement data, avoiding inaccurate simulation conditions. Meanwhile, PINN saved 42% calculation time, comparing to CFD. Moreover, there is a potential of PINN in using less time to apply a trained PINN to a new case by transfer learning, where however CFD needs to recalculate a new case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细雨听风完成签到,获得积分10
1秒前
薰硝壤应助科研通管家采纳,获得30
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
1257应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得100
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
生姜批发刘哥完成签到 ,获得积分10
5秒前
hu发布了新的文献求助30
5秒前
欧小仙完成签到,获得积分10
5秒前
哭泣的幻翠完成签到 ,获得积分10
7秒前
7秒前
8秒前
more应助欧小仙采纳,获得10
10秒前
几酌应助糟糕的霆采纳,获得10
12秒前
12秒前
13秒前
ys发布了新的文献求助30
15秒前
失眠书蝶完成签到 ,获得积分10
15秒前
wanci应助zzulyy采纳,获得10
15秒前
橙子味的邱憨憨完成签到 ,获得积分10
15秒前
小马甲应助ZYCong采纳,获得10
15秒前
asd发布了新的文献求助30
17秒前
我爱蓝胖子完成签到,获得积分10
20秒前
22秒前
23秒前
23秒前
24秒前
24秒前
zho应助AoAoo采纳,获得10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159701
求助须知:如何正确求助?哪些是违规求助? 2810654
关于积分的说明 7888962
捐赠科研通 2469692
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012