Indoor airflow field reconstruction using physics-informed neural network

气流 计算流体力学 人工神经网络 领域(数学) 计算机科学 边值问题 入口 边界(拓扑) 流量(数学) 模拟 人工智能 工程类 机械 机械工程 数学 航空航天工程 物理 数学分析 纯数学
作者
Chenghao Wei,Ryozo Ooka
出处
期刊:Building and Environment [Elsevier BV]
卷期号:242: 110563-110563 被引量:26
标识
DOI:10.1016/j.buildenv.2023.110563
摘要

Obtaining a detailed indoor airflow field is important for the accurate and efficient control of indoor environmental comfort. Traditional computational fluid dynamics (CFD) methods and CFD-based surrogate models are time-consuming and sometimes produce inaccurate results because of difficulties in reproducing accurate inlet boundary conditions. Artificial neural networks (ANN) can be utilized to reconstruct indoor airflow fields directly from measurement data without building a large inaccurate and time-consuming CFD database. However, as a purely data-driven method, a normal ANN can yield unphysical results. A physics-informed neural network (PINN) is one possible solution. In this study, a PINN was introduced to reconstruct an indoor airflow field basing on measurement data (without inlet boundary conditions), and compared with ANN. The results show that the PINN produced more physical results than the ANN and is more tolerant to a reduction in the number of measurement points. In specific cases, the mean errors of the PINN results for the 98-, 32, and 16 point cases were 89%, 79%, and 70% of those of the ANN results, respectively. The PINN showed practical application potential in cases where the amount of measured data was relatively small. Comparing to traditional CFD, PINN can reconstruct the detailed airflow field directly from measurement data, avoiding inaccurate simulation conditions. Meanwhile, PINN saved 42% calculation time, comparing to CFD. Moreover, there is a potential of PINN in using less time to apply a trained PINN to a new case by transfer learning, where however CFD needs to recalculate a new case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮然完成签到,获得积分10
2秒前
Keviton发布了新的文献求助10
3秒前
3秒前
大个应助暮然采纳,获得10
5秒前
完美世界应助talpionchen采纳,获得10
6秒前
小蘑菇应助宇宙的琴弦采纳,获得10
8秒前
沉默靳发布了新的文献求助10
9秒前
2222完成签到,获得积分20
13秒前
14秒前
一路有你完成签到 ,获得积分10
14秒前
暮然发布了新的文献求助10
20秒前
FRIGHTINGx完成签到 ,获得积分10
20秒前
dio小面包完成签到 ,获得积分10
22秒前
23秒前
25秒前
sddq发布了新的文献求助10
26秒前
26秒前
27秒前
章章发布了新的文献求助10
29秒前
31秒前
Theprisoners举报竹萱求助涉嫌违规
31秒前
Tsui发布了新的文献求助10
31秒前
小叮当发布了新的文献求助10
32秒前
ccx981166完成签到,获得积分10
33秒前
ller完成签到,获得积分10
34秒前
釉质牙医完成签到 ,获得积分20
34秒前
桃子应助英勇语山采纳,获得10
35秒前
章章完成签到,获得积分10
35秒前
沉默靳完成签到,获得积分10
35秒前
37秒前
宇宙的琴弦完成签到,获得积分10
38秒前
40秒前
大胆的以冬完成签到,获得积分10
41秒前
温小圆完成签到,获得积分10
42秒前
赵云江完成签到,获得积分10
42秒前
还单身的寒云完成签到,获得积分10
43秒前
踏实的寒烟完成签到,获得积分10
44秒前
充电宝应助俊杰采纳,获得10
44秒前
yuminger完成签到 ,获得积分10
46秒前
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999408
求助须知:如何正确求助?哪些是违规求助? 3538753
关于积分的说明 11275049
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810111