Lightweight and intelligent model based on enhanced sparse filtering for rotating machine fault diagnosis

过度拟合 Softmax函数 计算机科学 人工智能 稳健性(进化) 分类器(UML) 断层(地质) 机器学习 模式识别(心理学) 人工神经网络 生物化学 化学 地震学 基因 地质学
作者
Yunhan Ling,Dianyu Fu,Peng Jiang,Yuwen Sun,Chao Yuan,Dali Huang,Jingfeng Lu,Siliang Lu
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312231185702
摘要

Rotating machine fault diagnosis plays a vital role in reducing maintenance costs and preventing accidents. Machine learning (ML) methods and Internet of things (IoT) technologies have been recently introduced into machine fault diagnosis and have generated inspiring results. An ML model with more trainable parameters can typically generate a higher fault diagnostic accuracy. However, the IoT nodes have limited computation and storage resources. How to design an ML model with high accuracy and computational efficiency is still a difficulty and challenge. This work develops an enhanced sparse filtering (ESF) method for mining and fusing the features of the machine signals for fault diagnosis. First, a dimension reduction algorithm is utilized for obtaining the principal components of the vibration signals that are hindered by noises. The distinct features of the principal components are then exploited by using sparse filtering (SF). To reduce the overfitting of the SF model, the L 1/2 norm is applied to regularize the objective function. Finally, the obtained features are combined as the inputs of a softmax classifier for machine fault pattern recognition. The effectiveness, superiority, and robustness of the proposed ESF method are validated by the simulated signals and the practical bearing and motor fault signals compared with the other conventional methods. The lightweight and intelligent ESF algorithm is also deployed onto an edge computing node to realize online motor fault diagnosis. The designed model and the proposed method show great potential in highly accurate and efficient rotation machine fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的听白完成签到,获得积分10
2秒前
2秒前
SYQ发布了新的文献求助10
6秒前
10秒前
12秒前
高挑的雪糕完成签到 ,获得积分20
12秒前
15秒前
15秒前
LQ发布了新的文献求助30
18秒前
19秒前
20秒前
大模型应助飞飞采纳,获得10
22秒前
22秒前
Orange应助花羽采纳,获得10
25秒前
27秒前
27秒前
29秒前
30秒前
小李发布了新的文献求助10
31秒前
33秒前
35秒前
36秒前
HuangMddd发布了新的文献求助10
36秒前
李健应助满意的不二采纳,获得10
37秒前
科目三应助哒布6采纳,获得10
39秒前
充电宝应助可乐采纳,获得10
39秒前
花羽发布了新的文献求助10
39秒前
40秒前
Yee发布了新的文献求助10
40秒前
没心情Q发布了新的文献求助10
40秒前
44秒前
简单幻竹发布了新的文献求助30
44秒前
Jimmy Ko发布了新的文献求助10
44秒前
要减肥的之云完成签到 ,获得积分10
47秒前
猫大哥发布了新的文献求助10
47秒前
韩soso完成签到 ,获得积分10
49秒前
飞飞发布了新的文献求助10
50秒前
51秒前
思源应助科研通管家采纳,获得10
52秒前
充电宝应助科研通管家采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869216
求助须知:如何正确求助?哪些是违规求助? 6449460
关于积分的说明 15660496
捐赠科研通 4984990
什么是DOI,文献DOI怎么找? 2688170
邀请新用户注册赠送积分活动 1630683
关于科研通互助平台的介绍 1588692