A multi-channel UNet framework based on SNMF-DCNN for robust heart-lung-sound separation

非负矩阵分解 稳健性(进化) 计算机科学 卷积神经网络 语音识别 源分离 模式识别(心理学) 人工智能 矩阵分解 基因 生物化学 特征向量 物理 化学 量子力学
作者
Weibo Wang,Dimei Qin,Shubo Wang,Fang Yu,Yongkang Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107282-107282 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107282
摘要

Cardiopulmonary and cardiovascular diseases are fatal factors that threaten human health and cause many deaths worldwide each year, so it is essential to screen cardiopulmonary disease more accurately and efficiently. Auscultation is a non-invasive method for physicians' perception of the disease. The Heart Sounds (HS) and Lung Sounds (LS) recorded by an electronic stethoscope consist of acoustic information that is helpful in the diagnosis of pulmonary conditions. Still, inter-interference between HS and LS presented in both the time and frequency domains blocks diagnostic efficiency. This paper proposes a blind source separation (BSS)strategy that first classifies Heart-Lung-Sound (HLS) according to its LS features and then separates it into HS and LS. Sparse Non-negative Matrix Factorization (SNMF) is employed to extract the LS features in HLS, then proposed a network constructed by Dilated Convolutional Neural Network (DCNN) to classify HLS into five types by the magnitude features of LS. Finally, Multi-Channel UNet (MCUNet) separation model is utilized for each category of HLS. This paper is the first to propose the HLS classification method SNMF-DCNN and apply UNet to the cardiopulmonary sound separation domain. Compared with other state-of-the-art methods, the proposed framework in this paper has higher separation quality and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芭娜55发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
猪猪hero应助李锐采纳,获得10
2秒前
猪猪hero应助李锐采纳,获得10
2秒前
CAOHOU应助李锐采纳,获得10
3秒前
南山无梅落应助李锐采纳,获得10
3秒前
pluto应助李锐采纳,获得10
3秒前
dypdyp应助毅诚菌采纳,获得10
3秒前
Magali应助李锐采纳,获得30
3秒前
种田发布了新的文献求助10
3秒前
归尘应助李锐采纳,获得10
3秒前
归尘应助李锐采纳,获得10
3秒前
CAOHOU应助李锐采纳,获得10
3秒前
5秒前
11完成签到 ,获得积分10
6秒前
星期五发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
猪猪hero应助李锐采纳,获得10
9秒前
猪猪hero应助李锐采纳,获得10
9秒前
猪猪hero应助李锐采纳,获得10
9秒前
共享精神应助受伤雨南采纳,获得10
9秒前
猪猪hero应助李锐采纳,获得10
9秒前
南山无梅落应助李锐采纳,获得10
9秒前
ED应助李锐采纳,获得10
9秒前
猪猪hero应助李锐采纳,获得10
9秒前
猪猪hero应助李锐采纳,获得10
9秒前
蔓越莓蛋糕应助李锐采纳,获得10
9秒前
猪猪hero应助李锐采纳,获得10
9秒前
10秒前
Strongly完成签到,获得积分10
10秒前
念姬发布了新的文献求助10
11秒前
12秒前
清茶发布了新的文献求助10
12秒前
12秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579