High-entropy electrolytes for practical lithium metal batteries

电解质 离子电导率 电化学 材料科学 电导率 溶剂化 阳极 电化学窗口 快离子导体 锂(药物) 化学工程 离子 无机化学 电极 化学 物理化学 有机化学 内分泌学 工程类 医学
作者
Sang Cheol Kim,Jingyang Wang,Rong Xu,Pu Zhang,Yuelang Chen,Zhuojun Huang,Yufei Yang,Zhiao Yu,Solomon T. Oyakhire,Wenbo Zhang,Louisa C. Greenburg,Mun Sek Kim,David Boyle,Philaphon Sayavong,Yusheng Ye,Jian Qin,Zhenan Bao,Yi Cui
出处
期刊:Nature Energy [Springer Nature]
卷期号:8 (8): 814-826 被引量:340
标识
DOI:10.1038/s41560-023-01280-1
摘要

Electrolyte engineering is crucial for improving battery performance, particularly for lithium metal batteries. Recent advances in electrolytes have greatly improved cyclability by enhancing electrochemical stability at the electrode interfaces, but concurrently achieving high ionic conductivity has remained challenging. Here we report an electrolyte design strategy for enhanced lithium metal batteries by increasing the molecular diversity in electrolytes, which essentially leads to high-entropy electrolytes. We find that, in weakly solvating electrolytes, the entropy effect reduces ion clustering while preserving the characteristic anion-rich solvation structures, which is characterized by synchrotron-based X-ray scattering and molecular dynamics simulations. Electrolytes with smaller-sized clusters exhibit a twofold improvement in ionic conductivity compared with conventional weakly solvating electrolytes, enabling stable cycling at high current densities up to 2C (6.2 mA cm−2) in anode-free LiNi0.6Mn0.2Co0.2 (NMC622)||Cu pouch cells. The efficacy of the design strategy is verified by performance improvements in three disparate weakly solvating electrolyte systems. Electrolyte engineering has proven an effective approach to enhance the performance of lithium metal batteries. Here the authors propose a strategy by using multiple solvents in weakly solvating electrolytes—dubbed as high-entropy electrolytes—to improve the ionic conductivity while maintaining electrochemical stability, leading to high-performance batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
飞飞应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得200
1秒前
情怀应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
星辰大海应助xiaozhu采纳,获得10
1秒前
Stella应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
spc68应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助糟糕的雁菱采纳,获得10
3秒前
李不理发布了新的文献求助10
4秒前
cxt完成签到,获得积分10
4秒前
5秒前
可爱的函函应助123采纳,获得10
5秒前
Tigua发布了新的文献求助10
5秒前
瑞汐没有咖啡完成签到,获得积分10
5秒前
5秒前
火星上的十三完成签到,获得积分10
5秒前
Lucas应助心灵美的大山采纳,获得10
6秒前
张鑫怡完成签到,获得积分10
6秒前
6秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587509
求助须知:如何正确求助?哪些是违规求助? 4670670
关于积分的说明 14783758
捐赠科研通 4623041
什么是DOI,文献DOI怎么找? 2531297
邀请新用户注册赠送积分活动 1499973
关于科研通互助平台的介绍 1468080