Multiobjective Stochastic Optimization: A Case of Real-Time Matching in Ride-Sourcing Markets

计算机科学 数学优化 后悔 随机优化 匹配(统计) 先验与后验 在线算法 最优化问题 随机规划 多目标优化 集合(抽象数据类型) 算法 数学 哲学 机器学习 认识论 统计 程序设计语言
作者
Guodong Lyu,Wang Chi Cheung,Chung‐Piaw Teo,Hai Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (2): 500-518 被引量:12
标识
DOI:10.1287/msom.2020.0247
摘要

Problem definition: The job of any marketplace is to facilitate the matching of supply with demand in real time. Success is often measured using various metrics. The challenge is to design matching algorithms to balance the tradeoffs among multiple objectives in a stochastic environment, to arrive at a “compromise” solution, which minimizes say the [Formula: see text]-norm–based distance function between the attained performance metrics and the target performances. Methodology/results: We observe that the sample average approximation formulation of this multiobjective stochastic optimization problem can be solved by an online algorithm that uses only gradient information from “historical” (i.e., past) sample information and not on the current state of the system. The online algorithm relies on a set of weight functions, which are updated adaptively over time, based on real-time tracking of the gaps in attained performance and the performance target. This allows us to recast the online algorithm as a randomized algorithm to solve the original stochastic problem. When the predetermined performance targets are attainable, our randomized policy achieves the targets with a near-optimal performance guarantee (measured by regret, or deviation away from the optimal performance). When the targets are not attainable, our policy generates a compromise solution to the multiobjective stochastic optimization problem, even when the efficient frontier for this stochastic optimization problem cannot be explicitly characterized a priori. We implement our model to address a challenge faced by a ride-sourcing platform that matches passengers and drivers in real time. Four performance metrics—platform revenue, driver service score, pick-up distance, and number of matched pairs—are simultaneously considered in the design of ride-matching algorithm, without prespecifying the weight on each performance metric. This mechanism has been extensively tested using synthetic and real data. Managerial implications: We show that, under appropriate conditions, all parties in the ride-sourcing ecosystem, from drivers, passengers, to the platform, can be better off under our compromise matching policy compared with other popular policies currently in use. In particular, the platform can obtain higher revenue and ensure better drivers (with higher service scores) are assigned more orders, and passengers are more likely to be matched to better drivers (albeit with a slight increase in the waiting time) compared with existing policies that focus on pick-up distance minimization. The ability to balance the conflicting goals in multiple objectives in a stochastic operating environment has the potential to contribute to the long-term sustainable growth of ride-sourcing platforms. Funding: This work was supported by the Singapore Ministry of Education AcRF Tier 3 [Grant MOE-2019-T3-1-010], the Hong Kong University of Science and Technology [Grant R9827], the Singapore Management University [Lee Kong Chian Fellowship], and the Singapore Ministry of Education AcRF Tier 2 [Grant T2EP20121-0035]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2020.0247 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kirren完成签到,获得积分10
刚刚
盛夏发布了新的文献求助10
刚刚
追寻的秋玲完成签到,获得积分10
刚刚
可乐不了完成签到 ,获得积分10
刚刚
爱丽丝应助美满的小甜瓜采纳,获得10
1秒前
文二目分完成签到 ,获得积分10
1秒前
Xumeiling完成签到,获得积分10
2秒前
qqqqgc完成签到,获得积分20
2秒前
3秒前
3秒前
Owen应助Su采纳,获得10
3秒前
慕青应助蓝色雪狐采纳,获得10
3秒前
cookie完成签到,获得积分10
3秒前
fosca完成签到,获得积分10
4秒前
CyrusSo524应助以恒之心采纳,获得10
4秒前
4秒前
是江江哥啊完成签到,获得积分10
4秒前
Daisy应助zwy采纳,获得10
4秒前
5秒前
5秒前
cookie发布了新的文献求助10
6秒前
加美希尔完成签到,获得积分10
6秒前
精明的甜瓜应助郭先森采纳,获得10
6秒前
风中的安双完成签到,获得积分10
7秒前
7秒前
冷傲迎梦完成签到,获得积分20
9秒前
9秒前
vinni发布了新的文献求助10
9秒前
仙人殊恍惚应助研友_ZGR70n采纳,获得10
9秒前
李明月完成签到,获得积分10
9秒前
zhongxuejie完成签到,获得积分10
9秒前
yanziwu94完成签到,获得积分10
9秒前
xh发布了新的文献求助10
9秒前
9秒前
王加通完成签到,获得积分10
9秒前
10秒前
精明的甜瓜应助神羊采纳,获得20
10秒前
asd发布了新的文献求助10
10秒前
ghy完成签到 ,获得积分10
11秒前
火星上芹菜完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051