Multiobjective Stochastic Optimization: A Case of Real-Time Matching in Ride-Sourcing Markets

计算机科学 数学优化 后悔 随机优化 匹配(统计) 先验与后验 在线算法 最优化问题 随机规划 多目标优化 集合(抽象数据类型) 算法 数学 哲学 统计 认识论 机器学习 程序设计语言
作者
Guodong Lyu,Wang Chi Cheung,Chung‐Piaw Teo,Hai Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (2): 500-518 被引量:10
标识
DOI:10.1287/msom.2020.0247
摘要

Problem definition: The job of any marketplace is to facilitate the matching of supply with demand in real time. Success is often measured using various metrics. The challenge is to design matching algorithms to balance the tradeoffs among multiple objectives in a stochastic environment, to arrive at a “compromise” solution, which minimizes say the [Formula: see text]-norm–based distance function between the attained performance metrics and the target performances. Methodology/results: We observe that the sample average approximation formulation of this multiobjective stochastic optimization problem can be solved by an online algorithm that uses only gradient information from “historical” (i.e., past) sample information and not on the current state of the system. The online algorithm relies on a set of weight functions, which are updated adaptively over time, based on real-time tracking of the gaps in attained performance and the performance target. This allows us to recast the online algorithm as a randomized algorithm to solve the original stochastic problem. When the predetermined performance targets are attainable, our randomized policy achieves the targets with a near-optimal performance guarantee (measured by regret, or deviation away from the optimal performance). When the targets are not attainable, our policy generates a compromise solution to the multiobjective stochastic optimization problem, even when the efficient frontier for this stochastic optimization problem cannot be explicitly characterized a priori. We implement our model to address a challenge faced by a ride-sourcing platform that matches passengers and drivers in real time. Four performance metrics—platform revenue, driver service score, pick-up distance, and number of matched pairs—are simultaneously considered in the design of ride-matching algorithm, without prespecifying the weight on each performance metric. This mechanism has been extensively tested using synthetic and real data. Managerial implications: We show that, under appropriate conditions, all parties in the ride-sourcing ecosystem, from drivers, passengers, to the platform, can be better off under our compromise matching policy compared with other popular policies currently in use. In particular, the platform can obtain higher revenue and ensure better drivers (with higher service scores) are assigned more orders, and passengers are more likely to be matched to better drivers (albeit with a slight increase in the waiting time) compared with existing policies that focus on pick-up distance minimization. The ability to balance the conflicting goals in multiple objectives in a stochastic operating environment has the potential to contribute to the long-term sustainable growth of ride-sourcing platforms. Funding: This work was supported by the Singapore Ministry of Education AcRF Tier 3 [Grant MOE-2019-T3-1-010], the Hong Kong University of Science and Technology [Grant R9827], the Singapore Management University [Lee Kong Chian Fellowship], and the Singapore Ministry of Education AcRF Tier 2 [Grant T2EP20121-0035]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2020.0247 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助淳于如雪采纳,获得10
2秒前
3秒前
欢欢发布了新的文献求助10
3秒前
我是老大应助Zxj采纳,获得10
4秒前
淀粉肠发布了新的文献求助10
4秒前
ZZ完成签到 ,获得积分10
5秒前
无花果应助piano呀采纳,获得10
5秒前
古今奇观完成签到 ,获得积分10
6秒前
淳于如雪完成签到,获得积分10
6秒前
7秒前
8秒前
苗老九完成签到,获得积分20
11秒前
852应助刘敏采纳,获得10
11秒前
乐观寻绿完成签到,获得积分10
12秒前
夏木完成签到 ,获得积分10
12秒前
葛力发布了新的文献求助10
12秒前
15秒前
橙花发布了新的文献求助10
15秒前
无花果应助欢欢采纳,获得10
15秒前
背后的小白菜完成签到,获得积分10
18秒前
18秒前
完美世界应助归海听云采纳,获得30
19秒前
20秒前
英姑应助雨水采纳,获得30
20秒前
活力雁枫完成签到,获得积分10
21秒前
无风完成签到 ,获得积分10
21秒前
呆瓜完成签到,获得积分10
22秒前
levi发布了新的文献求助10
22秒前
22秒前
亚婷儿完成签到,获得积分10
23秒前
orixero应助LanDepp采纳,获得10
24秒前
科目三应助葛力采纳,获得10
24秒前
哎哟很烦发布了新的文献求助10
24秒前
25秒前
科研通AI2S应助饱满泥猴桃采纳,获得10
26秒前
乐意完成签到,获得积分10
26秒前
难过冰之发布了新的文献求助10
28秒前
龘龘龘完成签到,获得积分10
28秒前
云瑾应助哎哟很烦采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137211
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785274
捐赠科研通 2444247
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601023