Multiobjective Stochastic Optimization: A Case of Real-Time Matching in Ride-Sourcing Markets

计算机科学 数学优化 后悔 随机优化 匹配(统计) 先验与后验 在线算法 最优化问题 随机规划 多目标优化 集合(抽象数据类型) 算法 数学 哲学 机器学习 认识论 统计 程序设计语言
作者
Guodong Lyu,Wang Chi Cheung,Chung‐Piaw Teo,Hai Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (2): 500-518 被引量:17
标识
DOI:10.1287/msom.2020.0247
摘要

Problem definition: The job of any marketplace is to facilitate the matching of supply with demand in real time. Success is often measured using various metrics. The challenge is to design matching algorithms to balance the tradeoffs among multiple objectives in a stochastic environment, to arrive at a “compromise” solution, which minimizes say the [Formula: see text]-norm–based distance function between the attained performance metrics and the target performances. Methodology/results: We observe that the sample average approximation formulation of this multiobjective stochastic optimization problem can be solved by an online algorithm that uses only gradient information from “historical” (i.e., past) sample information and not on the current state of the system. The online algorithm relies on a set of weight functions, which are updated adaptively over time, based on real-time tracking of the gaps in attained performance and the performance target. This allows us to recast the online algorithm as a randomized algorithm to solve the original stochastic problem. When the predetermined performance targets are attainable, our randomized policy achieves the targets with a near-optimal performance guarantee (measured by regret, or deviation away from the optimal performance). When the targets are not attainable, our policy generates a compromise solution to the multiobjective stochastic optimization problem, even when the efficient frontier for this stochastic optimization problem cannot be explicitly characterized a priori. We implement our model to address a challenge faced by a ride-sourcing platform that matches passengers and drivers in real time. Four performance metrics—platform revenue, driver service score, pick-up distance, and number of matched pairs—are simultaneously considered in the design of ride-matching algorithm, without prespecifying the weight on each performance metric. This mechanism has been extensively tested using synthetic and real data. Managerial implications: We show that, under appropriate conditions, all parties in the ride-sourcing ecosystem, from drivers, passengers, to the platform, can be better off under our compromise matching policy compared with other popular policies currently in use. In particular, the platform can obtain higher revenue and ensure better drivers (with higher service scores) are assigned more orders, and passengers are more likely to be matched to better drivers (albeit with a slight increase in the waiting time) compared with existing policies that focus on pick-up distance minimization. The ability to balance the conflicting goals in multiple objectives in a stochastic operating environment has the potential to contribute to the long-term sustainable growth of ride-sourcing platforms. Funding: This work was supported by the Singapore Ministry of Education AcRF Tier 3 [Grant MOE-2019-T3-1-010], the Hong Kong University of Science and Technology [Grant R9827], the Singapore Management University [Lee Kong Chian Fellowship], and the Singapore Ministry of Education AcRF Tier 2 [Grant T2EP20121-0035]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2020.0247 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的觅风完成签到 ,获得积分10
刚刚
pp完成签到 ,获得积分10
刚刚
小蓝完成签到,获得积分10
1秒前
认真丹亦完成签到 ,获得积分10
2秒前
如意雨雪完成签到 ,获得积分10
2秒前
研友_ngqjz8完成签到,获得积分0
2秒前
小杨完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
zlx完成签到 ,获得积分10
4秒前
5秒前
坚定尔蓝完成签到,获得积分10
6秒前
土木研学僧完成签到,获得积分10
7秒前
whj完成签到 ,获得积分10
9秒前
颜夜完成签到,获得积分10
10秒前
要不先吃饭完成签到,获得积分10
10秒前
三水发布了新的文献求助10
10秒前
酷酷依秋完成签到,获得积分10
12秒前
爱学习的小钟完成签到 ,获得积分10
12秒前
dongtan完成签到 ,获得积分10
14秒前
胡大笑哈哈哈完成签到 ,获得积分10
14秒前
孟子完成签到 ,获得积分10
15秒前
sclorry完成签到,获得积分10
16秒前
16秒前
乌云乌云快走开完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
luoyukejing完成签到,获得积分10
21秒前
阿宁宁完成签到 ,获得积分10
22秒前
核桃发布了新的文献求助10
23秒前
Ava应助欧欧欧导采纳,获得10
24秒前
hi_traffic发布了新的文献求助10
25秒前
柿花不是花完成签到 ,获得积分10
26秒前
沙脑完成签到 ,获得积分10
26秒前
1310发布了新的文献求助10
28秒前
徐老师完成签到 ,获得积分10
28秒前
qin完成签到,获得积分10
29秒前
龙仔完成签到 ,获得积分10
32秒前
无心的天真完成签到 ,获得积分10
33秒前
Cll完成签到 ,获得积分10
33秒前
执着的以筠完成签到 ,获得积分10
34秒前
研究僧完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4945869
求助须知:如何正确求助?哪些是违规求助? 4210204
关于积分的说明 13086603
捐赠科研通 3990515
什么是DOI,文献DOI怎么找? 2184729
邀请新用户注册赠送积分活动 1200116
关于科研通互助平台的介绍 1113703