Multiobjective Stochastic Optimization: A Case of Real-Time Matching in Ride-Sourcing Markets

计算机科学 数学优化 后悔 随机优化 匹配(统计) 先验与后验 在线算法 最优化问题 随机规划 多目标优化 集合(抽象数据类型) 算法 数学 哲学 统计 认识论 机器学习 程序设计语言
作者
Guodong Lyu,Wang Chi Cheung,Chung‐Piaw Teo,Hai Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (2): 500-518 被引量:17
标识
DOI:10.1287/msom.2020.0247
摘要

Problem definition: The job of any marketplace is to facilitate the matching of supply with demand in real time. Success is often measured using various metrics. The challenge is to design matching algorithms to balance the tradeoffs among multiple objectives in a stochastic environment, to arrive at a “compromise” solution, which minimizes say the [Formula: see text]-norm–based distance function between the attained performance metrics and the target performances. Methodology/results: We observe that the sample average approximation formulation of this multiobjective stochastic optimization problem can be solved by an online algorithm that uses only gradient information from “historical” (i.e., past) sample information and not on the current state of the system. The online algorithm relies on a set of weight functions, which are updated adaptively over time, based on real-time tracking of the gaps in attained performance and the performance target. This allows us to recast the online algorithm as a randomized algorithm to solve the original stochastic problem. When the predetermined performance targets are attainable, our randomized policy achieves the targets with a near-optimal performance guarantee (measured by regret, or deviation away from the optimal performance). When the targets are not attainable, our policy generates a compromise solution to the multiobjective stochastic optimization problem, even when the efficient frontier for this stochastic optimization problem cannot be explicitly characterized a priori. We implement our model to address a challenge faced by a ride-sourcing platform that matches passengers and drivers in real time. Four performance metrics—platform revenue, driver service score, pick-up distance, and number of matched pairs—are simultaneously considered in the design of ride-matching algorithm, without prespecifying the weight on each performance metric. This mechanism has been extensively tested using synthetic and real data. Managerial implications: We show that, under appropriate conditions, all parties in the ride-sourcing ecosystem, from drivers, passengers, to the platform, can be better off under our compromise matching policy compared with other popular policies currently in use. In particular, the platform can obtain higher revenue and ensure better drivers (with higher service scores) are assigned more orders, and passengers are more likely to be matched to better drivers (albeit with a slight increase in the waiting time) compared with existing policies that focus on pick-up distance minimization. The ability to balance the conflicting goals in multiple objectives in a stochastic operating environment has the potential to contribute to the long-term sustainable growth of ride-sourcing platforms. Funding: This work was supported by the Singapore Ministry of Education AcRF Tier 3 [Grant MOE-2019-T3-1-010], the Hong Kong University of Science and Technology [Grant R9827], the Singapore Management University [Lee Kong Chian Fellowship], and the Singapore Ministry of Education AcRF Tier 2 [Grant T2EP20121-0035]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2020.0247 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔺映秋完成签到,获得积分10
刚刚
hhhhhhan616完成签到,获得积分10
1秒前
1秒前
yu完成签到,获得积分20
1秒前
1秒前
728发布了新的文献求助10
1秒前
科研通AI2S应助塵埃采纳,获得10
2秒前
2秒前
YB完成签到,获得积分10
3秒前
yyq617569158完成签到,获得积分20
3秒前
Csy完成签到,获得积分10
3秒前
奋斗静蕾发布了新的文献求助10
3秒前
3秒前
4秒前
柏莉发布了新的文献求助10
4秒前
Youth完成签到,获得积分10
5秒前
5秒前
5秒前
coco发布了新的文献求助10
5秒前
我不是笨蛋完成签到,获得积分10
5秒前
XXXXX完成签到 ,获得积分10
5秒前
5秒前
CipherSage应助cyy1226采纳,获得10
6秒前
yan发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
机灵水卉发布了新的文献求助10
6秒前
Kiki完成签到 ,获得积分10
6秒前
7秒前
无奈敏完成签到,获得积分10
7秒前
Akim应助文献小聂采纳,获得10
7秒前
Ethan完成签到,获得积分10
7秒前
端庄棒棒糖完成签到,获得积分10
8秒前
可爱的函函应助tiezhu采纳,获得10
8秒前
8秒前
一一完成签到,获得积分10
8秒前
元宝团子完成签到,获得积分10
8秒前
hahage完成签到,获得积分10
8秒前
Lengbo完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997