亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model Compression Methods for YOLOv5: A Review

计算机科学 量化(信号处理) 修剪 边缘设备 人工智能 推论 机器学习 分类 数据科学 计算机视觉 农学 云计算 生物 操作系统
作者
Martin Jáni,Jamil Fayyad,Younes Al Younes,Homayoun Najjaran
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.11904
摘要

Over the past few years, extensive research has been devoted to enhancing YOLO object detectors. Since its introduction, eight major versions of YOLO have been introduced with the purpose of improving its accuracy and efficiency. While the evident merits of YOLO have yielded to its extensive use in many areas, deploying it on resource-limited devices poses challenges. To address this issue, various neural network compression methods have been developed, which fall under three main categories, namely network pruning, quantization, and knowledge distillation. The fruitful outcomes of utilizing model compression methods, such as lowering memory usage and inference time, make them favorable, if not necessary, for deploying large neural networks on hardware-constrained edge devices. In this review paper, our focus is on pruning and quantization due to their comparative modularity. We categorize them and analyze the practical results of applying those methods to YOLOv5. By doing so, we identify gaps in adapting pruning and quantization for compressing YOLOv5, and provide future directions in this area for further exploration. Among several versions of YOLO, we specifically choose YOLOv5 for its excellent trade-off between recency and popularity in literature. This is the first specific review paper that surveys pruning and quantization methods from an implementation point of view on YOLOv5. Our study is also extendable to newer versions of YOLO as implementing them on resource-limited devices poses the same challenges that persist even today. This paper targets those interested in the practical deployment of model compression methods on YOLOv5, and in exploring different compression techniques that can be used for subsequent versions of YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
19秒前
19秒前
大力的如天完成签到,获得积分10
20秒前
谦让小松鼠完成签到,获得积分10
36秒前
36秒前
陶醉的烤鸡完成签到 ,获得积分10
37秒前
科研通AI2S应助甜蜜笑阳采纳,获得10
44秒前
二牛完成签到,获得积分10
49秒前
Aurora发布了新的文献求助10
52秒前
灰灰12138完成签到,获得积分10
1分钟前
天明完成签到 ,获得积分10
1分钟前
叶黄戍发布了新的文献求助10
1分钟前
qq驳回了小马甲应助
1分钟前
1分钟前
1分钟前
1分钟前
像个间谍发布了新的文献求助10
1分钟前
甜蜜笑阳发布了新的文献求助10
1分钟前
王二完成签到,获得积分10
1分钟前
领导范儿应助甜蜜笑阳采纳,获得10
1分钟前
kelien1205完成签到 ,获得积分10
1分钟前
Aurora完成签到,获得积分10
1分钟前
派大星发布了新的文献求助10
1分钟前
btsforever完成签到 ,获得积分10
1分钟前
1分钟前
Alan弟弟发布了新的文献求助10
1分钟前
浅浅发布了新的文献求助10
1分钟前
黑洞的秘密完成签到,获得积分10
1分钟前
chujun_cai完成签到 ,获得积分10
1分钟前
1分钟前
烟消云散完成签到,获得积分10
1分钟前
所所应助Alan弟弟采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
坟里唱情歌完成签到 ,获得积分10
2分钟前
小萌兽完成签到 ,获得积分10
2分钟前
甜蜜笑阳发布了新的文献求助10
2分钟前
粽子完成签到,获得积分10
2分钟前
甜蜜笑阳完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041762
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505071
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860