Predictive abilities comparison from multiple dynamic prediction models

布里氏评分 计算机科学 接收机工作特性 背景(考古学) 机器学习 数据挖掘 预测建模 生物 古生物学
作者
C Moreau,Jérémie Riou,Marine Roux
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:32 (9): 1811-1822
标识
DOI:10.1177/09622802231188521
摘要

With the development of personalized medicine, the study of individual prognosis appears to be a major contemporary scientific issue. Dynamic models are particularly well adapted to such studies by allowing some potential changes in the follow-up to be taken into account. In particular, this leads to more accurate predictions by updating the available information throughout the patient monitoring. Some mathematical tools have been developed to quantify and compare the effectiveness of dynamic predictions using dynamic versions of the area under the receiver operating characteristic curve and the Brier score in the competing risks setting. Nevertheless, only two predictive abilities can be compared. This may be too restrictive in a clinical context where more and more information can be collected during patient follow-up thanks to recent technological advances. Here we propose a new procedure that allows multiple comparisons of the predictive abilities of different biomarkers, based on the dynamic area under the receiver operating characteristic curve or Brier score. Performances of our testing procedure were assessed by simulations. Moreover, a motivating application in hepatology will be presented. Finally, this work compares more than two dynamic predictive abilities of biomarkers and is available via R functions on GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻轻地呼吸完成签到,获得积分10
刚刚
刚刚
明天更好发布了新的文献求助10
刚刚
1秒前
猪血糕yu完成签到,获得积分10
1秒前
通~发布了新的文献求助10
1秒前
2秒前
科研小垃圾完成签到,获得积分10
2秒前
3秒前
生动的煎蛋完成签到,获得积分10
3秒前
NexusExplorer应助marinemiao采纳,获得10
3秒前
CXS完成签到,获得积分10
4秒前
4秒前
4秒前
小郭完成签到,获得积分10
4秒前
4秒前
123发布了新的文献求助10
5秒前
NN123完成签到 ,获得积分10
5秒前
FFFFFFF应助艺玲采纳,获得10
6秒前
袁访天发布了新的文献求助10
6秒前
辇道增七完成签到,获得积分10
6秒前
6秒前
幽默的太阳完成签到 ,获得积分10
7秒前
7秒前
Nininni完成签到,获得积分10
7秒前
Tao完成签到,获得积分10
7秒前
7秒前
zqh发布了新的文献求助10
7秒前
7秒前
虫虫发布了新的文献求助10
8秒前
无情豪英完成签到 ,获得积分10
8秒前
8秒前
8秒前
完美世界应助sansan采纳,获得10
8秒前
Inahurry发布了新的文献求助10
9秒前
HopeStar发布了新的文献求助10
9秒前
华仔应助科研狗采纳,获得10
9秒前
田様应助Liu采纳,获得10
10秒前
CH完成签到,获得积分10
10秒前
核桃发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740