Multi-agent deep reinforcement learning for task offloading in group distributed manufacturing systems

计算机科学 强化学习 云计算 分布式计算 边缘计算 边缘设备 整数规划 任务(项目管理) 人工智能 操作系统 算法 经济 管理
作者
Jianyu Xiong,Peng Guo,Yi Wang,Meng Xing,Jian Zhang,Linmao Qian,Zhi Yu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:118: 105710-105710 被引量:1
标识
DOI:10.1016/j.engappai.2022.105710
摘要

The rapid development of cloud computing and the Internet of Things (IoT) have facilitated near real-time optimization of the group distributed manufacturing systems. Currently, the most common technique to accomplish near-real-time optimization is cloud–edge cooperation for offloading optimization tasks. The tasks are partially offloaded to the cloud to be completed, and the remaining are kept at the edge. Due to the complexity of task offloading, such as capacity restrictions of cloud and edge computing resources, or task deadlines, unbalanced or insufficient tasks are offloaded to cloud and edge, causing time delay. To address the imbalance and insufficiency in the task offloading process, a mixed-integer programming model was developed to reduce the latency of task calculation. The task offloading problem is decomposed into two sub-problems: 1) Defining priorities for the tasks in near real-time. 2) Determining if the task is offloaded to the cloud. A multi-agent deep reinforcement learning with attention mechanism (MaDRLAM) framework is proposed to solve the two-step decision problem. The MaDRLAM framework consists of two agents, and each agent corresponds to a sub-problem. Each agent comprises an encoder and a decoder, and the two agents cooperate in devising an offloading strategy for the tasks. The Encoder and Decoder built for each agent are based on the Transformer structure. Unlike the traditional Transformer, we added the Pointer networks to the Transformer to solve the proposed decision problem. Besides, an improved multi-actor and single-critic strategy based on the REINFORCE algorithm is designed to train the proposed MaDRLAM. Finally, Extensive computational experiments are conducted on instances with a varying number of tasks, different task data sizes, and different cloud computing capacities. Computational results show that the proposed framework can find a solution with a GAP value of less than 1% within 1 s for each instance. The proposed framework is competitive in both solution accuracy and solution time compared with other offloading strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Silence发布了新的文献求助10
2秒前
坚守初心完成签到,获得积分10
2秒前
wishait发布了新的文献求助10
3秒前
库小学生发布了新的文献求助10
3秒前
活力绮兰发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Lucas应助聪明凌丝采纳,获得10
4秒前
JamesPei应助li采纳,获得10
5秒前
斯文败类应助pears采纳,获得10
5秒前
Lucas应助huang采纳,获得10
5秒前
z.发布了新的文献求助10
6秒前
6秒前
过儿发布了新的文献求助10
9秒前
婷妮哒哒发布了新的文献求助10
9秒前
端庄的萝发布了新的文献求助10
10秒前
11秒前
LeiX完成签到,获得积分10
11秒前
11秒前
坚守初心发布了新的文献求助10
11秒前
大反应釜发布了新的文献求助20
12秒前
NexusExplorer应助小太阳采纳,获得10
13秒前
z.完成签到,获得积分10
14秒前
14秒前
伊酒应助jideli采纳,获得10
15秒前
li发布了新的文献求助10
16秒前
满意的嵩发布了新的文献求助10
16秒前
16秒前
17秒前
景觅波发布了新的文献求助10
18秒前
19秒前
Lee发布了新的文献求助10
19秒前
丘比特应助婷妮哒哒采纳,获得10
20秒前
21秒前
放寒假的发布了新的文献求助10
21秒前
CipherSage应助端庄的萝采纳,获得10
22秒前
关关完成签到,获得积分20
23秒前
飞流直下完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664