An Untargeted Metabolomics Workflow that Scales to Thousands of Samples for Population-Based Studies

工作流程 联营 代谢组学 样品(材料) 人口 卫生信息学工具 化学信息学 化学 数据挖掘 原始数据 数据集 比例(比率) 信息学 计算机科学 计算生物学 数据库 人工智能 色谱法 生物 物理 人口学 计算化学 量子力学 社会学 电气工程 程序设计语言 工程类
作者
Ethan Stancliffe,Michaela Schwaiger-Haber,Miriam Sindelar,Matthew J. Murphy,Mette Soerensen,Gary J. Patti
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (50): 17370-17378 被引量:16
标识
DOI:10.1021/acs.analchem.2c01270
摘要

The success of precision medicine relies upon collecting data from many individuals at the population level. Although advancing technologies have made such large-scale studies increasingly feasible in some disciplines such as genomics, the standard workflows currently implemented in untargeted metabolomics were developed for small sample numbers and are limited by the processing of liquid chromatography/mass spectrometry data. Here we present an untargeted metabolomics workflow that is designed to support large-scale projects with thousands of biospecimens. Our strategy is to first evaluate a reference sample created by pooling aliquots of biospecimens from the cohort. The reference sample captures the chemical complexity of the biological matrix in a small number of analytical runs, which can subsequently be processed with conventional software such as XCMS. Although this generates thousands of so-called features, most do not correspond to unique compounds from the samples and can be filtered with established informatics tools. The features remaining represent a comprehensive set of biologically relevant reference chemicals that can then be extracted from the entire cohort's raw data on the basis of m/z values and retention times by using Skyline. To demonstrate applicability to large cohorts, we evaluated >2000 human plasma samples with our workflow. We focused our analysis on 360 identified compounds, but we also profiled >3000 unknowns from the plasma samples. As part of our workflow, we tested 14 different computational approaches for batch correction and found that a random forest-based approach outperformed the others. The corrected data revealed distinct profiles that were associated with the geographic location of participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形的易巧完成签到 ,获得积分10
刚刚
1秒前
Ava应助Autoimmune采纳,获得10
1秒前
科研通AI5应助多变的卡宾采纳,获得10
1秒前
Citrus发布了新的文献求助10
2秒前
科目三应助莉莉采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
惠惠发布了新的文献求助10
3秒前
深夜看文献的小刘完成签到,获得积分10
3秒前
菊菊发布了新的文献求助10
3秒前
3秒前
猪猪发布了新的文献求助10
4秒前
胖豆发布了新的文献求助10
4秒前
巴啦啦能量完成签到 ,获得积分10
4秒前
5秒前
完美凝海发布了新的文献求助30
5秒前
科研菜鸟发布了新的文献求助10
5秒前
升学顺利身体健康完成签到,获得积分10
6秒前
6秒前
爱学习发布了新的文献求助10
6秒前
cc发布了新的文献求助10
7秒前
533完成签到,获得积分20
7秒前
科研通AI5应助yx采纳,获得10
7秒前
8秒前
koi发布了新的文献求助10
8秒前
浦肯野应助湖月照我影采纳,获得30
8秒前
8秒前
陈博士完成签到,获得积分10
9秒前
Citrus完成签到,获得积分10
10秒前
费老三发布了新的文献求助30
10秒前
华仔应助chenjyuu采纳,获得10
10秒前
10秒前
最最最发布了新的文献求助10
10秒前
10秒前
Tuesday完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762