An Untargeted Metabolomics Workflow that Scales to Thousands of Samples for Population-Based Studies

工作流程 联营 代谢组学 样品(材料) 人口 卫生信息学工具 化学信息学 化学 数据挖掘 原始数据 数据集 比例(比率) 信息学 计算机科学 计算生物学 数据库 人工智能 色谱法 生物 工程类 社会学 计算化学 人口学 物理 电气工程 程序设计语言 量子力学
作者
Ethan Stancliffe,Michaela Schwaiger-Haber,Miriam Sindelar,Matthew J. Murphy,Mette Soerensen,Gary J. Patti
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (50): 17370-17378 被引量:16
标识
DOI:10.1021/acs.analchem.2c01270
摘要

The success of precision medicine relies upon collecting data from many individuals at the population level. Although advancing technologies have made such large-scale studies increasingly feasible in some disciplines such as genomics, the standard workflows currently implemented in untargeted metabolomics were developed for small sample numbers and are limited by the processing of liquid chromatography/mass spectrometry data. Here we present an untargeted metabolomics workflow that is designed to support large-scale projects with thousands of biospecimens. Our strategy is to first evaluate a reference sample created by pooling aliquots of biospecimens from the cohort. The reference sample captures the chemical complexity of the biological matrix in a small number of analytical runs, which can subsequently be processed with conventional software such as XCMS. Although this generates thousands of so-called features, most do not correspond to unique compounds from the samples and can be filtered with established informatics tools. The features remaining represent a comprehensive set of biologically relevant reference chemicals that can then be extracted from the entire cohort's raw data on the basis of m/z values and retention times by using Skyline. To demonstrate applicability to large cohorts, we evaluated >2000 human plasma samples with our workflow. We focused our analysis on 360 identified compounds, but we also profiled >3000 unknowns from the plasma samples. As part of our workflow, we tested 14 different computational approaches for batch correction and found that a random forest-based approach outperformed the others. The corrected data revealed distinct profiles that were associated with the geographic location of participants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syx发布了新的文献求助10
刚刚
刚刚
刚刚
念兹在兹完成签到,获得积分10
刚刚
呼啦啦发布了新的文献求助10
刚刚
土豆淀粉完成签到 ,获得积分10
1秒前
517完成签到,获得积分10
1秒前
Ysera发布了新的文献求助10
1秒前
2秒前
2秒前
燕子发布了新的文献求助10
2秒前
思源应助念心采纳,获得10
2秒前
3秒前
也许飞鸟能到那个木屋完成签到,获得积分10
3秒前
3秒前
3秒前
哎呀哎呀呀完成签到,获得积分10
4秒前
miao发布了新的文献求助20
4秒前
伯赏元彤完成签到,获得积分10
4秒前
小金今天自律了吗完成签到,获得积分10
4秒前
buyu发布了新的文献求助10
4秒前
彭于晏应助现代的无春采纳,获得10
5秒前
英吉利25发布了新的文献求助10
5秒前
lq完成签到,获得积分10
6秒前
6秒前
6秒前
炸鸡腿完成签到,获得积分10
6秒前
幽默身影发布了新的文献求助10
6秒前
6秒前
Shan发布了新的文献求助10
7秒前
若枫发布了新的文献求助10
7秒前
科研通AI6应助专注的枫叶采纳,获得10
7秒前
starlx0813完成签到 ,获得积分10
7秒前
仁爱的凡波完成签到,获得积分10
7秒前
曹晨完成签到,获得积分20
8秒前
8秒前
8秒前
BIANYAN完成签到,获得积分10
8秒前
多看文献发布了新的文献求助10
9秒前
当你完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005