An Untargeted Metabolomics Workflow that Scales to Thousands of Samples for Population-Based Studies

工作流程 联营 代谢组学 样品(材料) 人口 卫生信息学工具 化学信息学 化学 数据挖掘 原始数据 数据集 比例(比率) 信息学 计算机科学 计算生物学 数据库 人工智能 色谱法 生物 工程类 社会学 计算化学 人口学 物理 电气工程 程序设计语言 量子力学
作者
Ethan Stancliffe,Michaela Schwaiger-Haber,Miriam Sindelar,Matthew J. Murphy,Mette Soerensen,Gary J. Patti
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (50): 17370-17378 被引量:16
标识
DOI:10.1021/acs.analchem.2c01270
摘要

The success of precision medicine relies upon collecting data from many individuals at the population level. Although advancing technologies have made such large-scale studies increasingly feasible in some disciplines such as genomics, the standard workflows currently implemented in untargeted metabolomics were developed for small sample numbers and are limited by the processing of liquid chromatography/mass spectrometry data. Here we present an untargeted metabolomics workflow that is designed to support large-scale projects with thousands of biospecimens. Our strategy is to first evaluate a reference sample created by pooling aliquots of biospecimens from the cohort. The reference sample captures the chemical complexity of the biological matrix in a small number of analytical runs, which can subsequently be processed with conventional software such as XCMS. Although this generates thousands of so-called features, most do not correspond to unique compounds from the samples and can be filtered with established informatics tools. The features remaining represent a comprehensive set of biologically relevant reference chemicals that can then be extracted from the entire cohort's raw data on the basis of m/z values and retention times by using Skyline. To demonstrate applicability to large cohorts, we evaluated >2000 human plasma samples with our workflow. We focused our analysis on 360 identified compounds, but we also profiled >3000 unknowns from the plasma samples. As part of our workflow, we tested 14 different computational approaches for batch correction and found that a random forest-based approach outperformed the others. The corrected data revealed distinct profiles that were associated with the geographic location of participants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
3秒前
上帝发誓完成签到,获得积分10
4秒前
4秒前
今后应助江阳宏采纳,获得10
6秒前
9秒前
听话的刺猬完成签到 ,获得积分10
12秒前
way完成签到,获得积分10
12秒前
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
CipherSage应助自由妙竹采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
Hello应助科研通管家采纳,获得10
13秒前
香蕉诗蕊应助科研通管家采纳,获得10
13秒前
14秒前
科目三应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
细心的凌香完成签到,获得积分10
14秒前
椰子应助科研通管家采纳,获得10
14秒前
14秒前
香蕉诗蕊应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
kate应助科研通管家采纳,获得10
14秒前
hanwen应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
阳光冰颜完成签到,获得积分10
14秒前
河镜完成签到,获得积分10
15秒前
迪仔完成签到 ,获得积分10
15秒前
17秒前
无花果应助逃亡的小狗采纳,获得10
18秒前
Millar发布了新的文献求助10
18秒前
18秒前
NULL完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660180
求助须知:如何正确求助?哪些是违规求助? 4831795
关于积分的说明 15089378
捐赠科研通 4818785
什么是DOI,文献DOI怎么找? 2578783
邀请新用户注册赠送积分活动 1533379
关于科研通互助平台的介绍 1492124