对比度(视觉)
计算机科学
人工智能
对比度增强
翻译(生物学)
放射科
计算机断层摄影术
甲状腺
计算机视觉
医学
磁共振成像
生物化学
化学
信使核糖核酸
基因
内科学
作者
Jianyu Shi,Xiaohong Liu,Guo‐Yu Yang,Guangyu Wang
标识
DOI:10.1109/bibm55620.2022.9995366
摘要
Computed tomography (CT) is one of the most imaging methods widely used to locate lesions such as nodules, tumors, and cysts, and make primary diagnosis. For clearer imaging of anatomical or lesions, contrast-enhanced CT (CECT) scans are imaging with injecting a contrast agent into a patient during examination. But there are limits to iodine contrast injections so that CECT scans are not convenient like non-contrast enhanced CT (NECT). Recently, deep learning models bring impressive results in computer vision, including image translation. So, we would like to apply image translation methods to generate CECT images from the more accessible NECT images, and evaluate the effects of generated images on image detection tasks. In this study, we propose a method called cross-modal enhancement training strategy for thyroid anatomy detection, which employs CycleGAN to translate non-constrast enhanced CT images to enhanced CT style images with content reserved. The experiments are conducted on thyroid CT images with anatomy object annotation. The experimental results show that by adding translated images into the training dataset, the performance of thyroid anatomy detection can be effectively improved. We achieve the best mAP of 82.5% compared to 73.2% in the along non-contrast enhanced CT training.
科研通智能强力驱动
Strongly Powered by AbleSci AI