Pretraining Transformers for TCR-pMHC Binding Prediction

T细胞受体 计算机科学 主要组织相容性复合体 计算生物学 稳健性(进化) 人工智能 T细胞 抗原 生物 免疫学 免疫系统 遗传学 基因
作者
Jinsheng Shang,Qihong Jiao,Cheng Chen,Da‐Ming Zhu,Xuefeng Cui
标识
DOI:10.1109/bibm55620.2022.9994875
摘要

The knowledge concerning antigen presentation by the main histocompatibility complex (MHC) to T-cell receptor (TCR) and TCR binding specificity can facilitate the application of T-cell immunity in modern medicine, such as tumor immunotherapy and drug and vaccine design cases. With the development of high-throughput sequencing technology and artificial intelligence, data-driven approaches can be employed to help understand the rules of TCR-pMHC binding. Simulating the biological binding process of TCRs and pMHCs, we propose a novel pipeline, pMTattn, using transfer learning based on an attention mechanism for TCR-pMHC binding prediction. During the pretraining stage, partner-specific training strategies can capture useful local binding features. In the fine-tuning stage, an attention block is employed to aggregate the TCR encoding and pMHC encoding information, forming a better global TCR-pMHC representation. Visualization experiments indicate that the pMTattn model focuses more on the voxels near the binding sites of pMHCs and TCRs. This key observation effectively supports our hypothesis that attention is critical for TCR-pMHC binding prediction. In addition, on an independent test set, the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC) are improved from 0.533 to 0.583 and from 0.830 to 0.866, respectively, by pMTattn compared to those of the state-of-the-art model. Simultaneously, we also explore the influences of different sequence lengths and dataset differences on the model effect, and pMTattn exhibits better robustness than other models. These results suggest that pMTattn has the ability to be used as an adjunct tool for screening and discovering neoantigens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的襄完成签到,获得积分10
刚刚
坚强枫完成签到,获得积分10
刚刚
1秒前
谨慎采白完成签到 ,获得积分10
1秒前
liu发布了新的文献求助10
1秒前
bian完成签到 ,获得积分10
1秒前
2秒前
小卫完成签到,获得积分10
2秒前
Dr.Dream完成签到,获得积分10
2秒前
youli发布了新的文献求助10
3秒前
sasa发布了新的文献求助10
3秒前
甜甜圈完成签到 ,获得积分10
3秒前
summer发布了新的文献求助10
4秒前
Xiaopan发布了新的文献求助10
4秒前
我是微风完成签到,获得积分10
4秒前
4秒前
凉凉应助博修采纳,获得10
5秒前
皛鱼应助扭一扭泡一泡采纳,获得10
5秒前
草履虫完成签到,获得积分10
5秒前
Hello应助27采纳,获得10
6秒前
爱吃菠萝蜜完成签到,获得积分10
6秒前
zhengzhao完成签到,获得积分10
6秒前
rover完成签到 ,获得积分10
6秒前
7秒前
7秒前
102755发布了新的文献求助10
7秒前
歪歪完成签到,获得积分10
7秒前
haly完成签到 ,获得积分10
8秒前
illiterate完成签到,获得积分10
8秒前
研友_Y59785完成签到,获得积分0
8秒前
111完成签到,获得积分20
8秒前
飘逸数据线完成签到,获得积分10
8秒前
小泓完成签到,获得积分10
8秒前
阿木木完成签到,获得积分10
9秒前
Kalmia完成签到,获得积分10
9秒前
meme发布了新的文献求助10
9秒前
调皮的达完成签到,获得积分10
9秒前
许鸽完成签到,获得积分10
10秒前
生言生语完成签到,获得积分10
10秒前
尼克拉倒完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259