Vibration-Adaption Deep Convolutional Transfer Learning Method for Stranded Wire Structural Health Monitoring Using Guided Wave

特征提取 计算机科学 卷积神经网络 振动 人工智能 特征(语言学) 结构健康监测 频域 导波测试 深度学习 特征向量 学习迁移 模式识别(心理学) 声学 计算机视觉 电子工程 工程类 结构工程 物理 哲学 语言学
作者
Xiaobin Hong,Dingmin Yang,Liuwei Huang,Bin Zhang,Gang Jin
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:3
标识
DOI:10.1109/tim.2022.3224532
摘要

External vibration is the main disturbance condition in the practical monitoring of outdoor stranded structure using laser ultrasonic guided wave (UGW). It is difficult to extract and identify the real damage state under different vibration conditions due to the variation of the guided-wave feature distribution. At present, there is no effective solution to this practical problem. In this article, a new deep cross-domain adaptive semisupervised damage identification method is proposed by using transfer learning method and combining with the actual demand of stranded guided-wave monitoring. First, a novel laser excitation-piezoelectric receiving sensing method is realized by taking full advantage of the noncontact characteristics, wide frequency band, and high stability of the laser and piezoelectric sensors. Second, a multilayer convolutional neural network (CNN) is constructed to extract the damage features of the guided-wave signals in the source domain and map them to the high-level hidden space. Then, a multicore maximum mean discrepancy (MMD) method is designed to reduce the distribution difference of damage features between the target and source domains by using the optimal multicore selection method, and the essential damage features of UGWs were learned. Finally, different damage states of the target domain are effectively identified by feature identification. The experimental results illustrate that the proposed method can realize automatic extraction of inherent damage features and adaptive matching of multilayer features, connect the source and target domains in the high-level feature space, and learn the invariant features of guided-wave signals under different vibrations. Moreover, the proposed method has a good performance both in the mean between-class average distance and the mean within-class average distance damage degree of feature under various vibration conditions, reaches 100% accuracy in damage degree identification under different vibration conditions, and shows better performance than the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆浆油条完成签到,获得积分10
刚刚
小丫完成签到,获得积分20
刚刚
远_09完成签到 ,获得积分10
1秒前
DG发布了新的文献求助10
1秒前
Rare完成签到 ,获得积分10
1秒前
1秒前
小王完成签到,获得积分10
2秒前
旦皋发布了新的文献求助20
2秒前
淡定从凝完成签到,获得积分10
2秒前
tzy完成签到,获得积分10
2秒前
dinglingling完成签到 ,获得积分10
2秒前
慈祥的花瓣完成签到,获得积分10
3秒前
4秒前
俊逸的代曼完成签到,获得积分10
5秒前
5秒前
努力搬砖努力干完成签到,获得积分10
5秒前
学术鸟发布了新的文献求助10
5秒前
小飞完成签到,获得积分10
5秒前
5秒前
yyf完成签到,获得积分10
6秒前
慕青应助ttttttx采纳,获得10
6秒前
Silence发布了新的文献求助10
6秒前
ltf完成签到,获得积分10
7秒前
mimimi完成签到,获得积分10
7秒前
Guts完成签到,获得积分10
8秒前
可可完成签到,获得积分10
8秒前
若尘完成签到,获得积分10
8秒前
legend完成签到,获得积分10
9秒前
踏实的大地完成签到,获得积分10
9秒前
DijiaXu应助sunyanghu369采纳,获得10
9秒前
pangpang发布了新的文献求助10
9秒前
Chandler完成签到,获得积分10
10秒前
Cat完成签到,获得积分0
10秒前
10秒前
10秒前
10秒前
大闲鱼铭一完成签到 ,获得积分10
11秒前
zhonghebi应助Jane_2022采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
Guts发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016195
求助须知:如何正确求助?哪些是违规求助? 3556252
关于积分的说明 11320524
捐赠科研通 3289166
什么是DOI,文献DOI怎么找? 1812411
邀请新用户注册赠送积分活动 887936
科研通“疑难数据库(出版商)”最低求助积分说明 812058