Vibration-Adaption Deep Convolutional Transfer Learning Method for Stranded Wire Structural Health Monitoring Using Guided Wave

特征提取 计算机科学 卷积神经网络 振动 人工智能 特征(语言学) 结构健康监测 频域 导波测试 深度学习 特征向量 学习迁移 模式识别(心理学) 声学 计算机视觉 电子工程 工程类 结构工程 物理 哲学 语言学
作者
Xiaobin Hong,Dingmin Yang,Liuwei Huang,Bin Zhang,Gang Jin
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:3
标识
DOI:10.1109/tim.2022.3224532
摘要

External vibration is the main disturbance condition in the practical monitoring of outdoor stranded structure using laser ultrasonic guided wave (UGW). It is difficult to extract and identify the real damage state under different vibration conditions due to the variation of the guided-wave feature distribution. At present, there is no effective solution to this practical problem. In this article, a new deep cross-domain adaptive semisupervised damage identification method is proposed by using transfer learning method and combining with the actual demand of stranded guided-wave monitoring. First, a novel laser excitation-piezoelectric receiving sensing method is realized by taking full advantage of the noncontact characteristics, wide frequency band, and high stability of the laser and piezoelectric sensors. Second, a multilayer convolutional neural network (CNN) is constructed to extract the damage features of the guided-wave signals in the source domain and map them to the high-level hidden space. Then, a multicore maximum mean discrepancy (MMD) method is designed to reduce the distribution difference of damage features between the target and source domains by using the optimal multicore selection method, and the essential damage features of UGWs were learned. Finally, different damage states of the target domain are effectively identified by feature identification. The experimental results illustrate that the proposed method can realize automatic extraction of inherent damage features and adaptive matching of multilayer features, connect the source and target domains in the high-level feature space, and learn the invariant features of guided-wave signals under different vibrations. Moreover, the proposed method has a good performance both in the mean between-class average distance and the mean within-class average distance damage degree of feature under various vibration conditions, reaches 100% accuracy in damage degree identification under different vibration conditions, and shows better performance than the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘大妮发布了新的文献求助10
刚刚
刚刚
王欧尼发布了新的文献求助10
1秒前
sooya关注了科研通微信公众号
1秒前
2秒前
2秒前
青木蓝发布了新的文献求助10
4秒前
852应助gaga采纳,获得10
4秒前
5秒前
5秒前
游尘发布了新的文献求助10
6秒前
bkagyin应助zhaowenxian采纳,获得10
6秒前
水电费第三方完成签到,获得积分20
7秒前
斯文败类应助lalala采纳,获得10
7秒前
小王爱看文献完成签到,获得积分10
8秒前
李明完成签到,获得积分10
8秒前
酷波er应助Khr1stINK采纳,获得10
9秒前
cora发布了新的文献求助10
9秒前
shelly0621发布了新的文献求助10
9秒前
中华有为发布了新的文献求助10
9秒前
特兰克斯发布了新的文献求助10
9秒前
Ares完成签到,获得积分10
10秒前
10秒前
在水一方应助garyaa采纳,获得10
10秒前
DAN_完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助屹舟采纳,获得10
11秒前
科研通AI5应助一一采纳,获得10
12秒前
隐形的紫菜完成签到,获得积分10
12秒前
23132发布了新的文献求助10
13秒前
cora完成签到,获得积分10
14秒前
放眼天下完成签到 ,获得积分10
15秒前
文毛完成签到,获得积分10
15秒前
15秒前
16秒前
兴奋的问旋完成签到,获得积分10
16秒前
张张完成签到,获得积分10
16秒前
陈文学完成签到,获得积分10
17秒前
一一发布了新的文献求助10
17秒前
bkagyin应助潇洒的冷玉采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794