Vibration-Adaption Deep Convolutional Transfer Learning Method for Stranded Wire Structural Health Monitoring Using Guided Wave

特征提取 计算机科学 卷积神经网络 振动 人工智能 特征(语言学) 结构健康监测 频域 导波测试 深度学习 特征向量 学习迁移 模式识别(心理学) 声学 计算机视觉 电子工程 工程类 结构工程 物理 哲学 语言学
作者
Xiaobin Hong,Dingmin Yang,Liuwei Huang,Bin Zhang,Gang Jin
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:3
标识
DOI:10.1109/tim.2022.3224532
摘要

External vibration is the main disturbance condition in the practical monitoring of outdoor stranded structure using laser ultrasonic guided wave (UGW). It is difficult to extract and identify the real damage state under different vibration conditions due to the variation of the guided-wave feature distribution. At present, there is no effective solution to this practical problem. In this article, a new deep cross-domain adaptive semisupervised damage identification method is proposed by using transfer learning method and combining with the actual demand of stranded guided-wave monitoring. First, a novel laser excitation-piezoelectric receiving sensing method is realized by taking full advantage of the noncontact characteristics, wide frequency band, and high stability of the laser and piezoelectric sensors. Second, a multilayer convolutional neural network (CNN) is constructed to extract the damage features of the guided-wave signals in the source domain and map them to the high-level hidden space. Then, a multicore maximum mean discrepancy (MMD) method is designed to reduce the distribution difference of damage features between the target and source domains by using the optimal multicore selection method, and the essential damage features of UGWs were learned. Finally, different damage states of the target domain are effectively identified by feature identification. The experimental results illustrate that the proposed method can realize automatic extraction of inherent damage features and adaptive matching of multilayer features, connect the source and target domains in the high-level feature space, and learn the invariant features of guided-wave signals under different vibrations. Moreover, the proposed method has a good performance both in the mean between-class average distance and the mean within-class average distance damage degree of feature under various vibration conditions, reaches 100% accuracy in damage degree identification under different vibration conditions, and shows better performance than the comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏敏9813完成签到,获得积分10
刚刚
刚刚
LiuZhe发布了新的文献求助10
1秒前
甄遥完成签到,获得积分10
1秒前
谢同学发布了新的文献求助10
1秒前
搜集达人应助等待黎明采纳,获得10
2秒前
周易完成签到,获得积分10
2秒前
mavis发布了新的文献求助10
2秒前
一灯大师发布了新的文献求助10
2秒前
专注的问寒应助K.Cui采纳,获得10
3秒前
淡定发布了新的文献求助10
3秒前
arT完成签到,获得积分10
3秒前
今后应助WWZ采纳,获得10
5秒前
5秒前
Teletubbies应助Frank采纳,获得30
5秒前
ZHDNCG完成签到,获得积分10
5秒前
5秒前
Vyasa完成签到,获得积分10
5秒前
小马甲应助大气靳采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
小蘑菇应助黄伟凯采纳,获得10
7秒前
L~完成签到,获得积分10
8秒前
cc举报wenzi96求助涉嫌违规
8秒前
ChiariRay完成签到,获得积分10
9秒前
Forever完成签到 ,获得积分10
9秒前
9秒前
光亮亦竹完成签到 ,获得积分10
11秒前
11秒前
Shumaila发布了新的文献求助10
11秒前
12秒前
12秒前
魔幻灵煌发布了新的文献求助10
13秒前
Lucas应助淡定采纳,获得10
13秒前
yyds发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425