Vibration-Adaption Deep Convolutional Transfer Learning Method for Stranded Wire Structural Health Monitoring Using Guided Wave

特征提取 计算机科学 卷积神经网络 振动 人工智能 特征(语言学) 结构健康监测 频域 导波测试 深度学习 特征向量 学习迁移 模式识别(心理学) 声学 计算机视觉 电子工程 工程类 结构工程 物理 语言学 哲学
作者
Xiaobin Hong,Dingmin Yang,Liuwei Huang,Bin Zhang,Gang Jin
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:3
标识
DOI:10.1109/tim.2022.3224532
摘要

External vibration is the main disturbance condition in the practical monitoring of outdoor stranded structure using laser ultrasonic guided wave (UGW). It is difficult to extract and identify the real damage state under different vibration conditions due to the variation of the guided-wave feature distribution. At present, there is no effective solution to this practical problem. In this article, a new deep cross-domain adaptive semisupervised damage identification method is proposed by using transfer learning method and combining with the actual demand of stranded guided-wave monitoring. First, a novel laser excitation-piezoelectric receiving sensing method is realized by taking full advantage of the noncontact characteristics, wide frequency band, and high stability of the laser and piezoelectric sensors. Second, a multilayer convolutional neural network (CNN) is constructed to extract the damage features of the guided-wave signals in the source domain and map them to the high-level hidden space. Then, a multicore maximum mean discrepancy (MMD) method is designed to reduce the distribution difference of damage features between the target and source domains by using the optimal multicore selection method, and the essential damage features of UGWs were learned. Finally, different damage states of the target domain are effectively identified by feature identification. The experimental results illustrate that the proposed method can realize automatic extraction of inherent damage features and adaptive matching of multilayer features, connect the source and target domains in the high-level feature space, and learn the invariant features of guided-wave signals under different vibrations. Moreover, the proposed method has a good performance both in the mean between-class average distance and the mean within-class average distance damage degree of feature under various vibration conditions, reaches 100% accuracy in damage degree identification under different vibration conditions, and shows better performance than the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
小秋发布了新的文献求助10
5秒前
5秒前
scinanpro完成签到 ,获得积分10
5秒前
6秒前
读研好难发布了新的文献求助10
9秒前
原子发布了新的文献求助10
11秒前
epitome发布了新的文献求助10
13秒前
李祥云完成签到 ,获得积分10
13秒前
FashionBoy应助原子采纳,获得10
19秒前
一只小松徐完成签到,获得积分20
22秒前
22秒前
情怀应助龙超人采纳,获得10
24秒前
24秒前
Ava应助虞无声采纳,获得10
25秒前
迷路仙人掌完成签到,获得积分10
25秒前
26秒前
Ava应助沉默的西牛采纳,获得10
26秒前
123发布了新的文献求助10
27秒前
27秒前
华仔应助小秋采纳,获得10
28秒前
28秒前
田様应助WYN采纳,获得10
29秒前
30秒前
30秒前
Hu发布了新的文献求助10
34秒前
LLL完成签到,获得积分10
35秒前
陶1122完成签到,获得积分10
37秒前
荼柒完成签到,获得积分10
38秒前
Zhang应助夏飞飞采纳,获得20
39秒前
沉默的西牛完成签到,获得积分10
39秒前
40秒前
42秒前
45秒前
paul关注了科研通微信公众号
46秒前
La-crazy应助callmecjh采纳,获得10
47秒前
47秒前
荼柒完成签到,获得积分10
48秒前
FashionBoy应助sssssssssss采纳,获得10
48秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468