出租车
捕食
分叉
常量(计算机编程)
霍普夫分叉
数学
理论(学习稳定性)
应用数学
跨临界分岔
鞍结分岔
稳态(化学)
统计物理学
控制理论(社会学)
数理经济学
生态学
物理
经济
生物
非线性系统
计算机科学
化学
植物
量子力学
机器学习
程序设计语言
控制(管理)
物理化学
管理
作者
Yan Li,Zhiyi Lv,Fengrong Zhang,Hui Huang
标识
DOI:10.1142/s1793524523500110
摘要
In this paper, we study a diffusive predator–prey model with hyperbolic mortality and prey-taxis under homogeneous Neumann boundary condition. We first analyze the influence of prey-taxis on the local stability of constant equilibria. It turns out that prey-taxis has influence on the stability of the unique positive constant equilibrium, but has no influence on the stability of the trivial equilibrium and the semi-trivial equilibrium. We then derive Hopf bifurcation and steady state bifurcation related to prey-taxis, which imply that the prey-taxis plays an important role in the dynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI