Using Process Data to Improve Classification Accuracy of Cognitive Diagnosis Model

计算机科学 过程(计算) 人工智能 机器学习 数据挖掘 认知 心理学 操作系统 神经科学
作者
Kangjun Liang,Dongbo Tu,Yan Cai
出处
期刊:Multivariate Behavioral Research [Taylor & Francis]
卷期号:58 (5): 969-987 被引量:5
标识
DOI:10.1080/00273171.2022.2157788
摘要

With the advance of computer-based assessments, many process data, such as response times (RTs), action sequences, Eye-tracking data, the log data for collaborative problem-solving (CPS) and mouse click/drag becomes readily available. Findings from previous studies (e.g., Peng et al., Multivariate Behavioral Research, 1-20, 2021; Xu, The British Journal of Mathematical and Statistical Psychology, 73(3), 474-505, 2020; He & von Davier, Handbook of research on technology tools for real-world skill development (pp. 750-777). IGI Global, 2016; Man & Harring, Educational and Psychological Measurement, 81(3), 441-465, 2021) suggest a substantial relationship between this human-computer interactive process information and proficiency, which means these process data were potentially useful variables for psychological and educational measurement. To make full use of the process data, this paper aims to combine two useful and easily available types of process data, including the mouse click/drag traces and the response times, to the conventional cognitive diagnostic model (CDM) to better understand individual's response behavior and improve the classification accuracy of existing CDM. Then the full Bayesian analysis using Markov chain Monte Carlo (MCMC) was employed to estimate the proposed model parameters. The viability of the proposed model was investigated by an empirical data and two simulation studies. Results indicated the proposed model combing both types of process data could not only improve the attribute classification reliability in real data analysis, but also provide an improvement on item parameters recovery and person classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助阿聪采纳,获得100
刚刚
bkagyin应助Jason采纳,获得10
2秒前
晶坚强完成签到,获得积分10
2秒前
梓树发布了新的文献求助10
4秒前
英姑应助123456789采纳,获得10
4秒前
4秒前
6秒前
李笑完成签到,获得积分10
6秒前
友好真完成签到,获得积分10
6秒前
诺贝尔天才小狗完成签到,获得积分10
8秒前
流年发布了新的文献求助20
8秒前
水星摸鱼完成签到,获得积分10
9秒前
思源应助伍寒烟采纳,获得10
11秒前
TBI发布了新的文献求助200
11秒前
12秒前
13秒前
16秒前
Hello应助梓树采纳,获得10
17秒前
nml发布了新的文献求助10
17秒前
19秒前
名称完成签到,获得积分10
19秒前
tomorrow发布了新的文献求助30
19秒前
ED应助慵懒的树采纳,获得10
20秒前
flow完成签到 ,获得积分10
21秒前
tqmx完成签到,获得积分10
22秒前
苯环完成签到,获得积分10
23秒前
桐桐应助provin采纳,获得10
24秒前
无花果应助疯癫科研人采纳,获得10
25秒前
花花发布了新的文献求助10
25秒前
LJX完成签到,获得积分10
26秒前
一天一篇sci完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
31秒前
喝一口奶茶完成签到,获得积分10
31秒前
32秒前
33秒前
35秒前
在水一方应助甜甜采纳,获得10
35秒前
ruochenzu发布了新的文献求助10
35秒前
伍寒烟发布了新的文献求助10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309