Using Process Data to Improve Classification Accuracy of Cognitive Diagnosis Model

计算机科学 过程(计算) 人工智能 机器学习 数据挖掘 认知 心理学 操作系统 神经科学
作者
Kangjun Liang,Dongbo Tu,Yan Cai
出处
期刊:Multivariate Behavioral Research [Informa]
卷期号:58 (5): 969-987 被引量:3
标识
DOI:10.1080/00273171.2022.2157788
摘要

With the advance of computer-based assessments, many process data, such as response times (RTs), action sequences, Eye-tracking data, the log data for collaborative problem-solving (CPS) and mouse click/drag becomes readily available. Findings from previous studies (e.g., Peng et al., Multivariate Behavioral Research, 1-20, 2021; Xu, The British Journal of Mathematical and Statistical Psychology, 73(3), 474-505, 2020; He & von Davier, Handbook of research on technology tools for real-world skill development (pp. 750-777). IGI Global, 2016; Man & Harring, Educational and Psychological Measurement, 81(3), 441-465, 2021) suggest a substantial relationship between this human-computer interactive process information and proficiency, which means these process data were potentially useful variables for psychological and educational measurement. To make full use of the process data, this paper aims to combine two useful and easily available types of process data, including the mouse click/drag traces and the response times, to the conventional cognitive diagnostic model (CDM) to better understand individual's response behavior and improve the classification accuracy of existing CDM. Then the full Bayesian analysis using Markov chain Monte Carlo (MCMC) was employed to estimate the proposed model parameters. The viability of the proposed model was investigated by an empirical data and two simulation studies. Results indicated the proposed model combing both types of process data could not only improve the attribute classification reliability in real data analysis, but also provide an improvement on item parameters recovery and person classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
priss111应助风中的英采纳,获得30
1秒前
3秒前
阿猩a完成签到 ,获得积分10
3秒前
3秒前
烟花应助yurong采纳,获得10
3秒前
Ava应助枍枫采纳,获得10
6秒前
Altria发布了新的文献求助10
6秒前
研友_VZG7GZ应助坤仔采纳,获得30
6秒前
七_完成签到,获得积分10
7秒前
Ethan发布了新的文献求助30
9秒前
9秒前
xun完成签到,获得积分10
10秒前
GGGrigor完成签到,获得积分10
11秒前
yuki发布了新的文献求助10
12秒前
12秒前
yu小鱼发布了新的文献求助30
13秒前
insissst发布了新的文献求助10
13秒前
13秒前
menghuaxijie发布了新的文献求助10
13秒前
15秒前
小匹夫完成签到,获得积分10
15秒前
科研通AI2S应助七_采纳,获得10
18秒前
insissst完成签到,获得积分10
18秒前
枍枫发布了新的文献求助10
18秒前
从容芮应助科研通管家采纳,获得10
18秒前
从容芮应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
CipherSage应助Xu_W卜采纳,获得10
19秒前
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112