强化学习
自抗扰控制
控制理论(社会学)
执行机构
扰动(地质)
计算机科学
控制(管理)
跟踪(教育)
钢筋
表(数据库)
非线性系统
控制工程
工程类
人工智能
物理
古生物学
数据挖掘
国家观察员
生物
结构工程
量子力学
教育学
心理学
作者
Ming-Lei Yi,Yi-Lun Zhang,Xiang Huang,Haitao Zhang
标识
DOI:10.23919/ccc55666.2022.9902520
摘要
Piezoelectric actuators (PEAs) are crutial components in nano-positioning processes due to their high positioning precision. However, the application of PEAs is hindered by their intrinsic rate-dependent hysteretic nonlinearity. This paper proposes a reinforcement-learning-based active disturbance rejection control (RLBADRC) scheme for controling PEAs. Unlike conventional preexisting linear active disturbance rejection control (LADRC) for PEAs, control parameters are adaptively learned with Q learning in the present RLBADRC instead. Moreover, the tracking errors are regarded as control states, whereas different control parameters are regarded as control actions. By this means, a Q table is established offline and parameters are adaptively learned with the well-trained Q table model online. Comparative experiments are conducted to verify the effectiveness of the approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI