吸引子
李普希茨连续性
简并能级
半群
相空间
数学
数学分析
单调多边形
数学物理
非线性系统
指数
摄动(天文学)
物理
纯数学
量子力学
几何学
语言学
哲学
作者
Chunxiang Zhao,Fengjuan Meng,Chengkui Zhong
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-10-18
卷期号:28 (5): 2884-2910
被引量:4
标识
DOI:10.3934/dcdsb.2022196
摘要
In this paper, we consider some new results on the well-posedness and the asymptotic behavior of the solutions for a class of extensible beams equation with the nonlocal weak damping and nonlinear source terms. Our contribution is threefold. First, we establish the well-posedness by means of the monotone operator theory with locally Lipschitz perturbation. Then we show that the related solution semigroup $ \{S_{t}\}_{t\geq0} $ in phase space $ \mathcal{H} $ has a finite-dimensional global attractor $ \mathcal{A} $ which has some regularity when the growth exponent of the nonlinearity $ f(u) $ is up to the subcritical and critical case, respectively. Finally, we obtain the exponential attractor $ \mathcal{A}_{exp} $ of the dynamical system $ (\mathcal{H}, S_{t}) $. These results deepen and extend our previous works([31], [30]), where we only considered the existence of the global attractors in the case of degenerate damping.
科研通智能强力驱动
Strongly Powered by AbleSci AI