Denoising Offshore Distributed Acoustic Sensing Using Masked Auto‐Encoders to Enhance Earthquake Detection

海底管道 降噪 地震学 地质学 声学 计算机科学 人工智能 岩土工程 物理
作者
Qibin Shi,Marine Denolle,Yiyu Ni,Ethan Williams,Nan You
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:130 (2) 被引量:1
标识
DOI:10.1029/2024jb029728
摘要

Abstract Offshore distributed acoustic sensing (DAS) has emerged as a powerful technology for seismic monitoring, expanding the capacities of cable networks and coastal seismic networks to monitor offshore seismicity. However, offshore DAS data often combine signals unfamiliar to seismologists, including new types of instrumental noise and ocean signals that overprint those from tectonic sources, which may hinder seismological research. We develop a self‐supervised deep learning algorithm, a masked auto‐encoder (MAE), to denoise DAS data for seismological purposes. The model is trained on DAS recordings of local earthquakes with randomly masked channels acquired on fiber‐optic cables in the Cook Inlet offshore Alaska. To demonstrate the benefits of denoising for seismological research, we conduct the most fundamental steps to build any earthquake catalog: seismic phase picking, signal‐to‐noise ratio (SNR) estimation, and event association. We leverage the generalizability of ensemble deep learning models with cross‐correlation to predict phase picks with sufficient precision for post‐processing (e.g., earthquake location). The SNR of the denoised S waves of testing DAS data increased by 2.5 dB on average. The MAE denoised, on average, DAS data allows 2.7 times more S picks than the original noisy data for smaller regional earthquakes. The results demonstrate that our self‐supervised MAE can elevate the accuracy and efficiency of seismic monitoring with higher earthquake detectability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助llf采纳,获得10
1秒前
晴朗完成签到,获得积分10
1秒前
Orange应助枯藤老柳树采纳,获得10
1秒前
Nightangie发布了新的文献求助10
2秒前
LJM完成签到,获得积分10
2秒前
烟花应助熬夜的桃子采纳,获得10
3秒前
方远锋发布了新的文献求助10
3秒前
3秒前
4秒前
斯文败类应助Yimingfang采纳,获得10
4秒前
HH发布了新的文献求助10
4秒前
你猜完成签到,获得积分10
5秒前
gwd发布了新的文献求助10
6秒前
7秒前
京津冀jjj完成签到,获得积分20
7秒前
鑫叶发布了新的文献求助20
8秒前
香蕉觅云应助玩命的行云采纳,获得10
8秒前
刘洋完成签到 ,获得积分10
10秒前
一年半太久只争朝夕完成签到,获得积分10
10秒前
Dr.Lawrence应助研友_LJGoXn采纳,获得10
11秒前
11秒前
科研通AI5应助香香香采纳,获得10
12秒前
威武白秋完成签到,获得积分10
13秒前
14秒前
雪掩的往事完成签到,获得积分10
14秒前
烟花应助yy采纳,获得20
14秒前
14秒前
CipherSage应助BreezyGallery采纳,获得10
15秒前
慕青应助冯小Q采纳,获得10
15秒前
科研小民工应助默默三毒采纳,获得30
16秒前
火星上的菲鹰应助Nathaniel采纳,获得10
17秒前
17秒前
18秒前
____(fg)发布了新的文献求助10
18秒前
18秒前
19秒前
乐乐应助long采纳,获得10
19秒前
19秒前
yuaner发布了新的文献求助10
20秒前
HH完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760