Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王迪完成签到,获得积分10
刚刚
小麦发布了新的文献求助10
刚刚
asda完成签到,获得积分20
刚刚
1秒前
wrh完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
Twonej应助JuJu采纳,获得50
4秒前
林先生完成签到,获得积分10
4秒前
上官若男应助风懒懒采纳,获得10
4秒前
6秒前
Liu发布了新的文献求助10
6秒前
李佳笑发布了新的文献求助10
6秒前
7秒前
8秒前
桐桐应助天下无双采纳,获得10
8秒前
邓云瀚发布了新的文献求助10
9秒前
9秒前
9秒前
siyu发布了新的文献求助10
10秒前
锡嘻发布了新的文献求助10
11秒前
棒棒的红红完成签到,获得积分10
11秒前
彭宇彬完成签到,获得积分20
12秒前
小蘑菇应助asda采纳,获得10
12秒前
第一个月亮yu完成签到,获得积分10
13秒前
科目三应助承一采纳,获得10
14秒前
peng发布了新的文献求助10
15秒前
wmq完成签到,获得积分20
16秒前
18秒前
NexusExplorer应助壮观若南采纳,获得30
18秒前
柒_l完成签到,获得积分10
19秒前
桐桐应助锡嘻采纳,获得10
19秒前
19秒前
Lucas应助麦芽糖采纳,获得10
20秒前
ding应助生物摸鱼大师采纳,获得10
21秒前
21秒前
浮游应助邓云瀚采纳,获得10
21秒前
li完成签到,获得积分10
21秒前
Mic应助山野下采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642999
求助须知:如何正确求助?哪些是违规求助? 4760428
关于积分的说明 15019750
捐赠科研通 4801483
什么是DOI,文献DOI怎么找? 2566801
邀请新用户注册赠送积分活动 1524658
关于科研通互助平台的介绍 1484255