Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助zjz采纳,获得30
1秒前
1秒前
小吴同学发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
shaocat完成签到 ,获得积分10
3秒前
风中的眼神完成签到,获得积分10
3秒前
CAOHOU应助奋斗水香采纳,获得10
4秒前
俊逸梦蕊完成签到,获得积分10
4秒前
5秒前
典雅牛青关注了科研通微信公众号
5秒前
Xinxxx发布了新的文献求助10
5秒前
illusion完成签到,获得积分10
6秒前
wanci应助王冉冉采纳,获得30
7秒前
树小夏发布了新的文献求助10
8秒前
小吴同学完成签到,获得积分10
8秒前
赘婿应助kk_yang采纳,获得10
9秒前
成就伟祺关注了科研通微信公众号
10秒前
能干的语芙完成签到 ,获得积分10
10秒前
无欲无求傻傻完成签到,获得积分10
10秒前
10秒前
10秒前
尊敬寒松完成签到 ,获得积分10
10秒前
糊涂的麦片完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
wanci应助wangdafa采纳,获得10
12秒前
竹子co完成签到,获得积分10
12秒前
steventj完成签到,获得积分10
12秒前
yz完成签到 ,获得积分10
13秒前
朴实山兰完成签到,获得积分10
14秒前
tkkdy发布了新的文献求助10
14秒前
蓁蓁发布了新的文献求助10
14秒前
醉熏的鑫发布了新的文献求助10
15秒前
独家双层汉堡完成签到,获得积分10
15秒前
Li完成签到,获得积分10
16秒前
xcx发布了新的文献求助10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066