Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenaloe发布了新的文献求助10
1秒前
dara997发布了新的文献求助10
2秒前
2秒前
7788完成签到,获得积分10
2秒前
孙某某发布了新的文献求助10
2秒前
3秒前
jizy完成签到,获得积分10
3秒前
3秒前
坚定汝燕完成签到 ,获得积分10
4秒前
如是之人发布了新的文献求助10
4秒前
bulangni发布了新的文献求助10
5秒前
5秒前
打打应助鱼尾蓝采纳,获得10
5秒前
zys完成签到,获得积分10
5秒前
小吴发布了新的文献求助10
5秒前
宝宝发布了新的文献求助10
5秒前
6秒前
张雪瑞完成签到,获得积分10
6秒前
如意安青完成签到,获得积分10
6秒前
刻苦毛衣发布了新的文献求助10
7秒前
孙某某完成签到,获得积分20
7秒前
英勇哈密瓜数据线完成签到,获得积分10
8秒前
riyamao完成签到,获得积分10
8秒前
L_完成签到,获得积分10
8秒前
8秒前
JUll完成签到,获得积分10
9秒前
cuijinru完成签到 ,获得积分20
9秒前
如是之人完成签到,获得积分10
10秒前
edddyor发布了新的文献求助10
10秒前
10秒前
摆渡人发布了新的文献求助10
10秒前
Akim应助jizy采纳,获得10
10秒前
10秒前
10秒前
10秒前
合适的忆枫完成签到 ,获得积分10
11秒前
期待完成签到,获得积分10
11秒前
yaodaoji完成签到 ,获得积分10
11秒前
Lucas应助Ruoe采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396316
求助须知:如何正确求助?哪些是违规求助? 4516686
关于积分的说明 14060910
捐赠科研通 4428614
什么是DOI,文献DOI怎么找? 2432105
邀请新用户注册赠送积分活动 1424375
关于科研通互助平台的介绍 1403563