Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小狒狒完成签到,获得积分10
刚刚
DDY发布了新的文献求助10
刚刚
师宁完成签到,获得积分10
刚刚
李顺杰完成签到,获得积分10
1秒前
无极微光发布了新的文献求助10
1秒前
1秒前
chdhg完成签到 ,获得积分10
1秒前
宋江他大表哥完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
2秒前
香香完成签到,获得积分10
2秒前
2秒前
刘子迪发布了新的文献求助10
3秒前
现代柠檬完成签到,获得积分10
3秒前
luoluo完成签到,获得积分10
5秒前
成就绮琴完成签到 ,获得积分10
5秒前
小闫同学完成签到 ,获得积分10
5秒前
我是老大应助Sun采纳,获得10
5秒前
Benjamin完成签到,获得积分10
6秒前
镓氧锌钇铀应助江屿采纳,获得20
7秒前
7秒前
双双完成签到,获得积分10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
BINGBING1230发布了新的文献求助10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
赵景月完成签到,获得积分10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
wlscj应助科研通管家采纳,获得20
8秒前
Zx_1993应助科研通管家采纳,获得30
8秒前
彭于彦祖应助科研通管家采纳,获得150
8秒前
鸣蜩阿六完成签到,获得积分10
8秒前
大个应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Jennifer应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5358458
求助须知:如何正确求助?哪些是违规求助? 4489594
关于积分的说明 13974558
捐赠科研通 4391418
什么是DOI,文献DOI怎么找? 2412444
邀请新用户注册赠送积分活动 1405051
关于科研通互助平台的介绍 1379635