已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然的含蕾完成签到 ,获得积分10
2秒前
3秒前
WXY完成签到,获得积分10
3秒前
嘿嘿应助南风知哀意采纳,获得10
5秒前
LALA发布了新的文献求助10
9秒前
小湛湛完成签到 ,获得积分10
9秒前
10秒前
genius_yue发布了新的文献求助30
12秒前
尘曦完成签到,获得积分10
13秒前
chengymao完成签到,获得积分10
13秒前
老实的南风完成签到 ,获得积分10
14秒前
16秒前
16秒前
LALA发布了新的文献求助10
17秒前
无谓完成签到,获得积分10
22秒前
荔枝发布了新的文献求助20
22秒前
柠栀完成签到 ,获得积分10
24秒前
25秒前
26秒前
darkpigx完成签到,获得积分10
28秒前
爆米花应助叶95采纳,获得10
31秒前
开心惜梦完成签到,获得积分10
32秒前
寒冷又菡完成签到 ,获得积分10
36秒前
科研通AI6应助hhhh采纳,获得10
37秒前
38秒前
人九完成签到 ,获得积分10
38秒前
英姑应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
浮浮世世应助科研通管家采纳,获得30
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
浮浮世世应助科研通管家采纳,获得30
41秒前
ding应助LALA采纳,获得10
41秒前
科研通AI6应助小巧外套采纳,获得10
42秒前
42秒前
AA发布了新的文献求助10
43秒前
44秒前
陈top发布了新的文献求助10
45秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595590
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817799
捐赠科研通 4650797
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469726