Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助cure采纳,获得10
1秒前
bzc229完成签到,获得积分10
1秒前
1秒前
木鱼完成签到 ,获得积分10
2秒前
2秒前
唧唧发布了新的文献求助10
3秒前
Upupuu完成签到,获得积分10
3秒前
3秒前
得鹿梦鱼完成签到,获得积分10
3秒前
3秒前
花椒泡茶完成签到 ,获得积分10
4秒前
ccc1429536273发布了新的文献求助10
4秒前
4秒前
Sylvia完成签到,获得积分10
5秒前
黄婷发布了新的文献求助30
5秒前
jjleborn发布了新的文献求助10
5秒前
无限的盼秋完成签到 ,获得积分10
5秒前
wtt发布了新的文献求助10
6秒前
6秒前
cure完成签到,获得积分10
6秒前
略略略发布了新的文献求助10
7秒前
7秒前
小瓜发布了新的文献求助10
7秒前
lx发布了新的文献求助10
7秒前
跨越者发布了新的文献求助10
7秒前
王珂珂发布了新的文献求助10
7秒前
李健的小迷弟应助婷妞儿采纳,获得10
7秒前
李健应助小千采纳,获得10
8秒前
唧唧完成签到,获得积分20
8秒前
8秒前
9秒前
樱桃小浣完成签到 ,获得积分10
9秒前
隐形曼青应助Gnor采纳,获得10
10秒前
chen完成签到,获得积分10
10秒前
huhu发布了新的文献求助10
10秒前
管遥发布了新的文献求助10
10秒前
HanluMa完成签到 ,获得积分10
11秒前
12秒前
嘟嘟嘟嘟发布了新的文献求助10
12秒前
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388748
求助须知:如何正确求助?哪些是违规求助? 4511007
关于积分的说明 14037429
捐赠科研通 4421757
什么是DOI,文献DOI怎么找? 2428916
邀请新用户注册赠送积分活动 1421496
关于科研通互助平台的介绍 1400650