已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xx完成签到,获得积分10
2秒前
2秒前
刘恩瑜完成签到 ,获得积分10
4秒前
deletelzr完成签到,获得积分10
4秒前
CC完成签到 ,获得积分10
4秒前
Xx发布了新的文献求助10
5秒前
王平安完成签到 ,获得积分10
7秒前
Sdpol完成签到,获得积分10
7秒前
汪姝发布了新的文献求助10
7秒前
星辰大海应助Xx采纳,获得10
11秒前
田様应助逆天大脚采纳,获得10
13秒前
漂亮糖豆完成签到 ,获得积分10
15秒前
18秒前
zw完成签到 ,获得积分10
19秒前
oshunne发布了新的文献求助80
21秒前
ZH完成签到 ,获得积分10
22秒前
Sixth_GOD完成签到,获得积分10
24秒前
芊芊君子发布了新的文献求助20
24秒前
杨易完成签到 ,获得积分10
26秒前
谦让的冰海完成签到,获得积分10
29秒前
立麦完成签到 ,获得积分10
29秒前
小歘歘完成签到 ,获得积分10
30秒前
31秒前
32秒前
研友_VZG7GZ应助诸天真采纳,获得10
32秒前
35秒前
逆天大脚发布了新的文献求助10
36秒前
小蘑菇应助大喵采纳,获得10
37秒前
Kristine完成签到 ,获得积分10
39秒前
VV2001发布了新的文献求助10
41秒前
Ying完成签到,获得积分10
44秒前
45秒前
dream完成签到 ,获得积分10
46秒前
46秒前
梁吃鱼完成签到,获得积分10
47秒前
47秒前
闲听花落完成签到,获得积分10
47秒前
Fng11发布了新的文献求助20
47秒前
我不到啊完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258