Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
短发大叔完成签到,获得积分10
刚刚
夏樱完成签到,获得积分10
刚刚
知无涯者发布了新的文献求助10
1秒前
笑一笑完成签到,获得积分10
1秒前
yrw完成签到,获得积分10
1秒前
踏实绯发布了新的文献求助10
1秒前
HU完成签到,获得积分10
1秒前
宇文惜珊完成签到,获得积分20
1秒前
左右兮完成签到,获得积分10
2秒前
霸气果汁完成签到,获得积分10
2秒前
Lucas应助研友_LaOrMZ采纳,获得10
3秒前
情怀应助顺心寻云采纳,获得10
3秒前
wonderbgt完成签到,获得积分10
3秒前
曾经的慕灵完成签到,获得积分10
3秒前
daijk完成签到,获得积分10
3秒前
爆炒菜头完成签到,获得积分10
4秒前
皇帝的床帘完成签到,获得积分10
4秒前
壮观的谷冬完成签到,获得积分10
4秒前
巫马炎彬完成签到,获得积分0
4秒前
shzhang完成签到,获得积分10
4秒前
十六月夜完成签到,获得积分10
4秒前
37完成签到,获得积分10
5秒前
tans0008完成签到,获得积分10
5秒前
衣吾余完成签到,获得积分10
5秒前
FBQZDJG2122完成签到,获得积分10
5秒前
Stella应助ZXFFF采纳,获得30
5秒前
111发布了新的文献求助30
5秒前
蓝桉完成签到,获得积分10
5秒前
zoes完成签到 ,获得积分10
5秒前
zzz完成签到 ,获得积分10
6秒前
小米完成签到,获得积分10
6秒前
向乐瑶发布了新的文献求助10
6秒前
bubu完成签到,获得积分10
6秒前
liang19640908完成签到 ,获得积分10
6秒前
苹果清涟完成签到,获得积分10
6秒前
Bear完成签到 ,获得积分10
6秒前
yes完成签到 ,获得积分10
8秒前
haliw完成签到,获得积分10
8秒前
何木萧完成签到,获得积分10
9秒前
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347989
求助须知:如何正确求助?哪些是违规求助? 4482270
关于积分的说明 13949609
捐赠科研通 4380739
什么是DOI,文献DOI怎么找? 2407067
邀请新用户注册赠送积分活动 1399655
关于科研通互助平台的介绍 1372925