Multiblock spectral imaging for identification of pre-harvest sprouting in Hordeum vulgare

线性判别分析 VNIR公司 偏最小二乘回归 多光谱图像 人工智能 模式识别(心理学) 高光谱成像 普通大麦 计算机科学 数学 统计 植物 生物 禾本科
作者
Sebastian Helmut Orth,Federico Marini,Glen Fox,Marena Manley,Stefan Hayward
出处
期刊:Microchemical Journal [Elsevier]
卷期号:191: 108742-108742
标识
DOI:10.1016/j.microc.2023.108742
摘要

A novel data fusion method based on the use of visible/near-infrared (VNIR) and shortwave infrared (SWIR) imaging sensors, to distinguish between pregerminated and ungerminated barley grain is proposed. Spectral imaging was used to fingerprint germinated and ungerminated barley grain from a total of 5640 average spectra representing single barley kernels varying with respect to germination time. Chemometric approaches utilising partial least squares-discriminant analysis (PLS-DA) and multiblock sequential and orthogonalized partial least squares-linear discriminant analysis (SO-PLS-LDA) and sequential and orthogonalized covariance selection-linear discriminant analysis (SO-CovSel-LDA) were used to build classification models. SO-PLS-LDA achieved a total classification rate of 99.88%, while SO-CovSel-LDA resulted in a classification accuracy of 97.46% when a maximum of 8 variables were selected from each data block (VNIR and SWIR) – models were validated on an independent test set. The use of multiblock approaches led to increased prediction accuracy, compared to PLS-DA, and a viable solution to address the industry problem to detect pregerminated malting barley in a rapid, non-destructive manner. This represents a significant advance with respect to the current dated methods which are hindered by time-consuming wet chemistry techniques and human subjective bias. The potential of the proposed new technique also has the further advantage of moving toward multispectral systems which can be used to detect pre-harvest germinated barley using an even more computationally rapid and affordable online sorting machine incorporating the wavebands of importance selected by SO-CovSel-LDA. The study highlights how sequential and orthogonalised data fusion approaches, in the food and agricultural sector, are powerful solutions to real world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
水煮白菜完成签到 ,获得积分10
刚刚
1秒前
1秒前
Gwy1222完成签到,获得积分10
1秒前
lilia发布了新的文献求助10
1秒前
2秒前
2秒前
研友_VZG7GZ应助拓跋雨梅采纳,获得10
3秒前
香蕉梨愁完成签到,获得积分10
3秒前
重要的道之完成签到 ,获得积分10
3秒前
小彤发布了新的文献求助10
3秒前
LIU完成签到,获得积分10
3秒前
健忘惜海完成签到,获得积分20
4秒前
糖糖发布了新的文献求助10
4秒前
xiaofeiyan完成签到 ,获得积分10
4秒前
高高笑白完成签到,获得积分10
4秒前
尊敬湘发布了新的文献求助10
4秒前
jg发布了新的文献求助10
4秒前
BUBBLES完成签到,获得积分10
5秒前
5秒前
火星完成签到 ,获得积分10
6秒前
ozy关闭了ozy文献求助
6秒前
Akim应助hxy采纳,获得10
7秒前
7秒前
王辰睿完成签到 ,获得积分10
7秒前
lilia完成签到,获得积分10
8秒前
8秒前
会飞的鱼完成签到 ,获得积分10
9秒前
zyyyyyy完成签到,获得积分10
9秒前
小二郎应助pastor采纳,获得10
9秒前
BadBoy完成签到,获得积分10
9秒前
宝宝发布了新的文献求助10
9秒前
祖问筠完成签到,获得积分10
10秒前
11秒前
陈陈陈发布了新的文献求助10
11秒前
SciGPT应助Felix采纳,获得10
11秒前
songta发布了新的文献求助100
12秒前
LYN-66发布了新的文献求助10
12秒前
天天快乐应助东山月采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151089
求助须知:如何正确求助?哪些是违规求助? 2802543
关于积分的说明 7848537
捐赠科研通 2459877
什么是DOI,文献DOI怎么找? 1309380
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757