MRI‐Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning

医学 乳腺癌 乳房磁振造影 磁共振成像 人工智能 接收机工作特性 卷积神经网络 放射科 病变 核医学 模式识别(心理学) 乳腺摄影术 癌症 计算机科学 病理 内科学
作者
Chao Cong,Xiaoguang Li,Chunlai Zhang,Jing Zhang,Kaixiang Sun,Lianluyi Liu,Bharath Ambale‐Venkatesh,Xiaohong Chen,Yi Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (1): 148-161 被引量:5
标识
DOI:10.1002/jmri.28713
摘要

Background Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated. Purpose To implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences. Study Type Retrospective. Population A total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female). Field Strength/Sequence T1‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI) with gradient echo sequences, T2‐weighted imaging (T2WI) with spin‐echo sequences, diffusion‐weighted imaging with single‐shot echo‐planar sequence and at 1.5‐T. Assessment A convolutional neural network and long short‐term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI‐RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE‐MRI and non‐DCE sequences, respectively. Statistical Tests Sensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P‐value <0.05 was considered statistically significant. Results With the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE‐MRI, the DL‐based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE‐MRI/T2WI alone, respectively. Data Conclusion The DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent‐free combination is comparable to DCE‐MRI alone and the radiologists' reading in AUC and sensitivity. Evidence Level 3. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Priscilla应助doctorshg采纳,获得10
1秒前
Blake发布了新的文献求助10
1秒前
1秒前
李健应助real季氢采纳,获得10
2秒前
标致溪流发布了新的文献求助10
3秒前
5秒前
6秒前
超帅沂发布了新的文献求助10
6秒前
6秒前
6秒前
萧水白应助开心采纳,获得10
7秒前
7秒前
7秒前
7秒前
深情安青应助yaoyao采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
hua完成签到,获得积分10
9秒前
10秒前
10秒前
Sweger发布了新的文献求助10
10秒前
依小米完成签到 ,获得积分10
11秒前
云帆SaMa发布了新的文献求助10
11秒前
WANGYI发布了新的文献求助10
11秒前
Persevere完成签到,获得积分10
12秒前
zby完成签到,获得积分10
12秒前
jia完成签到,获得积分20
12秒前
王鑫发布了新的文献求助10
12秒前
13秒前
13秒前
辣辣耳朵发布了新的文献求助10
13秒前
xml发布了新的文献求助10
14秒前
英姑应助鲜艳的熊猫采纳,获得10
16秒前
有机酸发布了新的文献求助10
16秒前
17秒前
云帆SaMa完成签到,获得积分20
17秒前
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112