亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic Spatial Sparsification for Efficient Vision Transformers and Convolutional Neural Networks

计算机科学 计算 人工智能 变压器 失败 安全性令牌 卷积神经网络 特征(语言学) 模式识别(心理学) 算法 并行计算 语言学 哲学 物理 计算机安全 量子力学 电压
作者
Yongming Rao,Zuyan Liu,Wenliang Zhao,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10883-10897 被引量:24
标识
DOI:10.1109/tpami.2023.3263826
摘要

In this paper, we present a new approach for model acceleration by exploiting spatial sparsity in visual data. We observe that the final prediction in vision Transformers is only based on a subset of the most informative regions, which is sufficient for accurate image recognition. Based on this observation, we propose a dynamic token sparsification framework to prune redundant tokens progressively and dynamically based on the input to accelerate vision Transformers. Specifically, we devise a lightweight prediction module to estimate the importance of each token given the current features. The module is added to different layers to prune redundant tokens hierarchically. While the framework is inspired by our observation of the sparse attention in vision Transformers, we find that the idea of adaptive and asymmetric computation can be a general solution for accelerating various architectures. We extend our method to hierarchical models including CNNs and hierarchical vision Transformers as well as more complex dense prediction tasks. To handle structured feature maps, we formulate a generic dynamic spatial sparsification framework with progressive sparsification and asymmetric computation for different spatial locations. By applying lightweight fast paths to less informative features and expressive slow paths to important locations, we can maintain the complete structure of feature maps while significantly reducing the overall computations. Extensive experiments on diverse modern architectures and different visual tasks demonstrate the effectiveness of our proposed framework. By hierarchically pruning 66% of the input tokens, our method greatly reduces 31% ∼ 35% FLOPs and improves the throughput by over 40% while the drop of accuracy is within 0.5% for various vision Transformers. By introducing asymmetric computation, a similar acceleration can be achieved on modern CNNs and Swin Transformers. Moreover, our method achieves promising results on more complex tasks including semantic segmentation and object detection. Our results clearly demonstrate that dynamic spatial sparsification offers a new and more effective dimension for model acceleration. Code is available at https://github.com/raoyongming/DynamicViT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
guoyu发布了新的文献求助10
6秒前
周什么园发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
无花果应助guoyu采纳,获得10
18秒前
43秒前
Garyzhou发布了新的文献求助20
48秒前
Garyzhou完成签到,获得积分10
59秒前
东郭源智完成签到,获得积分20
1分钟前
dddd发布了新的文献求助10
1分钟前
1分钟前
酷波er应助叽里呱啦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
搜集达人应助清风采纳,获得10
1分钟前
andrele发布了新的文献求助10
1分钟前
叽里呱啦发布了新的文献求助10
1分钟前
fox123完成签到,获得积分10
1分钟前
1分钟前
guoyu发布了新的文献求助10
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
华仔应助小章子冰箱采纳,获得10
2分钟前
雨停—发布了新的文献求助10
2分钟前
2分钟前
完美世界应助雨停—采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
旧城以西发布了新的文献求助10
3分钟前
3分钟前
Zhang发布了新的文献求助20
3分钟前
lbw完成签到 ,获得积分10
3分钟前
wpj发布了新的文献求助10
3分钟前
3分钟前
oscar完成签到,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015678
关于积分的说明 8871627
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482240
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951