Plastic and stimulus-specific coding of salient events in the central amygdala

神经科学 刺激(心理学) 心理学 扁桃形结构 多巴胺 厌恶性刺激 感觉系统 认知心理学
作者
Tao Yang,Kai Yu,Xian Zhang,Xiyuan Xiao,Xiaoke Chen,Yu Fu,Bo Li
出处
期刊:Nature [Springer Nature]
卷期号:616 (7957): 510-519 被引量:18
标识
DOI:10.1038/s41586-023-05910-2
摘要

The central amygdala (CeA) is implicated in a range of mental processes including attention, motivation, memory formation and extinction and in behaviours driven by either aversive or appetitive stimuli1–7. How it participates in these divergent functions remains elusive. Here we show that somatostatin-expressing (Sst+) CeA neurons, which mediate much of CeA functions3,6,8–10, generate experience-dependent and stimulus-specific evaluative signals essential for learning. The population responses of these neurons in mice encode the identities of a wide range of salient stimuli, with the responses of separate subpopulations selectively representing the stimuli that have contrasting valences, sensory modalities or physical properties (for example, shock and water reward). These signals scale with stimulus intensity, undergo pronounced amplification and transformation during learning, and are required for both reward and aversive learning. Notably, these signals contribute to the responses of dopamine neurons to reward and reward prediction error, but not to their responses to aversive stimuli. In line with this, Sst+ CeA neuron outputs to dopamine areas are required for reward learning, but are dispensable for aversive learning. Our results suggest that Sst+ CeA neurons selectively process information about differing salient events for evaluation during learning, supporting the diverse roles of the CeA. In particular, the information for dopamine neurons facilitates reward evaluation. Neurons in the central amygdala contribute to the reward prediction error responses of dopamine neurons to facilitate reward learning, but are not involved in aversive learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的觅荷完成签到,获得积分10
刚刚
种桃老总完成签到,获得积分10
1秒前
2秒前
zddddd发布了新的文献求助10
2秒前
Lipyoung发布了新的文献求助10
2秒前
2秒前
神经蛙完成签到,获得积分10
3秒前
帅帅子发布了新的文献求助10
3秒前
MasterE完成签到,获得积分10
3秒前
4秒前
锦2022完成签到,获得积分20
4秒前
5秒前
呱呱发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
13秒前
宾师傅完成签到 ,获得积分10
13秒前
13秒前
Huanghong发布了新的文献求助10
14秒前
汉堡包应助璇儿采纳,获得10
14秒前
跳跃鱼发布了新的文献求助10
14秒前
xuqiansd发布了新的文献求助10
15秒前
00完成签到,获得积分10
15秒前
风过大泽发布了新的文献求助10
16秒前
16秒前
七月完成签到 ,获得积分10
17秒前
luermei完成签到,获得积分10
18秒前
zzzzz完成签到,获得积分20
18秒前
顺心的羊发布了新的文献求助10
18秒前
等等小ur发布了新的文献求助10
19秒前
19秒前
现实的又夏发布了新的文献求助100
20秒前
Hosea完成签到 ,获得积分10
21秒前
22秒前
风和日丽完成签到,获得积分10
22秒前
xuqiansd完成签到,获得积分10
23秒前
芋泥波波完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122944
求助须知:如何正确求助?哪些是违规求助? 2773329
关于积分的说明 7717530
捐赠科研通 2428935
什么是DOI,文献DOI怎么找? 1290054
科研通“疑难数据库(出版商)”最低求助积分说明 621705
版权声明 600203