Identification of SSH Honeypots Using Machine Learning Techniques Based on Multi-Fingerprinting

蜜罐 计算机科学 鉴定(生物学) 入侵检测系统 指纹(计算) 网络安全 互联网 计算机安全 操作系统 植物 生物
作者
Yongjian Zhang,Wenjie Liu,Kenan Guo,Yanmei Kang
标识
DOI:10.1109/itnec56291.2023.10082467
摘要

Honeypots-a new active defense technique-can accomplish the goal of identifying security vulnerabilities and extracting attack features by constructing controlled vulnerability traps and deceiving attackers into launching intrusion assaults. Attackers typically use honeypot identification techniques to go around honeypots in order to conceal their attack strategies. In this paper, we proposes a new method for detecting and classifying SSH honeypots based on multi-fingerprinting. Target samples are first classified into suspected honeypots and normal hosts using the Random Forest algorithm, and then suspected honeypots are classified using multi-fingerprint features. This five-element detection model can increase the accuracy of honeypot classification while also cutting down on wasted time. Finally, through experimental measurements and comparative analysis with the other method for identifying honeypot, the method in this paper significantly improves the accuracy of identifying SSH honeypot types. It is also more efficient in classifying and detecting large-scale target IPs for honeypots, and there are a lot of real SSH honeypot IPs that can be found by searching the Internet, which can then be further analyzed to obtain their geographical distribution and survival rate characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
diudiu完成签到,获得积分10
刚刚
悠旷发布了新的文献求助10
1秒前
混子小高完成签到 ,获得积分10
1秒前
logan完成签到,获得积分10
1秒前
香蕉觅云应助Mao耶采纳,获得10
2秒前
CC完成签到,获得积分10
2秒前
秦春歌完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Rose_Yang完成签到 ,获得积分10
3秒前
英吉利25发布了新的文献求助30
3秒前
mj789完成签到,获得积分20
3秒前
向雨竹发布了新的文献求助10
4秒前
Wen3197312602发布了新的文献求助10
4秒前
4秒前
动听平露完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
ddddansu发布了新的文献求助10
5秒前
6秒前
杨辅政发布了新的文献求助10
6秒前
AliHamid完成签到,获得积分20
6秒前
胖子东完成签到,获得积分10
7秒前
CC完成签到,获得积分10
7秒前
DongWei95完成签到,获得积分10
7秒前
ambrose37完成签到 ,获得积分10
7秒前
欣喜的香彤完成签到,获得积分10
7秒前
陈艺鹏完成签到,获得积分10
7秒前
逆熵完成签到,获得积分10
8秒前
liuyuanyuan发布了新的文献求助10
8秒前
cuddly完成签到 ,获得积分10
8秒前
盷昀完成签到,获得积分10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874