Identification of SSH Honeypots Using Machine Learning Techniques Based on Multi-Fingerprinting

蜜罐 计算机科学 鉴定(生物学) 入侵检测系统 指纹(计算) 网络安全 互联网 计算机安全 操作系统 植物 生物
作者
Yongjian Zhang,Wenjie Liu,Kenan Guo,Yanmei Kang
标识
DOI:10.1109/itnec56291.2023.10082467
摘要

Honeypots-a new active defense technique-can accomplish the goal of identifying security vulnerabilities and extracting attack features by constructing controlled vulnerability traps and deceiving attackers into launching intrusion assaults. Attackers typically use honeypot identification techniques to go around honeypots in order to conceal their attack strategies. In this paper, we proposes a new method for detecting and classifying SSH honeypots based on multi-fingerprinting. Target samples are first classified into suspected honeypots and normal hosts using the Random Forest algorithm, and then suspected honeypots are classified using multi-fingerprint features. This five-element detection model can increase the accuracy of honeypot classification while also cutting down on wasted time. Finally, through experimental measurements and comparative analysis with the other method for identifying honeypot, the method in this paper significantly improves the accuracy of identifying SSH honeypot types. It is also more efficient in classifying and detecting large-scale target IPs for honeypots, and there are a lot of real SSH honeypot IPs that can be found by searching the Internet, which can then be further analyzed to obtain their geographical distribution and survival rate characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyw发布了新的文献求助10
刚刚
yyww发布了新的文献求助10
1秒前
jiujieweizi完成签到 ,获得积分10
1秒前
a1423072381完成签到,获得积分10
2秒前
2秒前
lmfffff发布了新的文献求助10
2秒前
2秒前
azw完成签到,获得积分10
3秒前
健壮的怜烟完成签到,获得积分10
5秒前
5秒前
易银辉发布了新的文献求助10
6秒前
7秒前
大榕树完成签到,获得积分10
7秒前
mengyijie发布了新的文献求助10
7秒前
9秒前
852应助yyww采纳,获得10
10秒前
遇见发布了新的文献求助10
11秒前
名人世界完成签到,获得积分20
11秒前
11秒前
大榕树发布了新的文献求助30
12秒前
perfect发布了新的文献求助10
12秒前
Belinda发布了新的文献求助10
14秒前
14秒前
14秒前
徐茂瑜完成签到 ,获得积分10
14秒前
慕青应助朴实初夏采纳,获得10
15秒前
15秒前
Orange应助aaaaa采纳,获得10
15秒前
小高同学发布了新的文献求助10
15秒前
慕青应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
mmmio应助科研通管家采纳,获得10
17秒前
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704026
求助须知:如何正确求助?哪些是违规求助? 3253627
关于积分的说明 9884836
捐赠科研通 2965504
什么是DOI,文献DOI怎么找? 1626382
邀请新用户注册赠送积分活动 770700
科研通“疑难数据库(出版商)”最低求助积分说明 743028