Few-Shot Learning-Based, Long-Term Stable, Sensitive Chemosensor for On-Site Colorimetric Detection of Cr(VI)

化学 期限(时间) 环境化学 物理 量子力学
作者
Zhaojing Huang,Hao Li,Jiayi Luo,Shunxing Li,Fengjiao Liu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (14): 6156-6162 被引量:14
标识
DOI:10.1021/acs.analchem.3c00604
摘要

The rapid emergence of deep learning, e.g., deep convolutional neural networks (DCNNs) as one-click image analysis with super-resolution, has already revolutionized colorimetric determination. But it is severely limited by its data-hungry nature, which is overcome by combining the generative adversarial network (GAN), i.e., few-shot learning (FSL). Using the same amount of real sample data, i.e., 414 and 447 samples as training and test sets, respectively, the accuracy could be increased from 51.26 to 85.00% because 13,500 antagonistic samples are created and used by GAN as the training set. Meanwhile, the generated image quality with GAN is better than that with the commonly used convolution self-encoder method. The simple and rapid on-site determination of Cr(VI) with 1,5-diphenylcarbazide (DPC)-based test paper is a favorite for environment monitoring but is limited by unstable DPC, poor sensitivity, and narrow linear range. The chromogenic agent of DPC is protected by the blending of polyacrylonitrile (PAN) and then loaded onto thin chromatographic silica gel (SG) as a Cr(VI) colorimetric sensor (DPC/PAN/SG); its stability could be prolonged from 18 h to more than 30 days, and its repeatable reproducibility is realized via facile electrospinning. By replacing the traditional Ed method with DCNN, the detection limit is greatly improved from 1.571 mg/L to 50.00 μg/L, and the detection range is prolonged from 1.571-8.000 to 0.0500-20.00 mg/L. The complete test time is shortened to 3 min. Even without time-consuming and easily stained enrichment processing, its detection limit of Cr(VI) in the drinking water can meet on-site detection requirements by USEPA, WHO, and China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜完成签到,获得积分10
刚刚
3秒前
名丿完成签到,获得积分10
3秒前
小熊完成签到,获得积分10
5秒前
科研通AI2S应助哈哈采纳,获得10
5秒前
科研小趴菜完成签到 ,获得积分10
9秒前
科研通AI2S应助ZHUHONGYAO采纳,获得10
10秒前
Yu完成签到,获得积分10
10秒前
泌尿邓完成签到,获得积分10
10秒前
可爱的函函应助显隐采纳,获得10
13秒前
13秒前
梧桐的灯完成签到 ,获得积分10
14秒前
16秒前
聪明怜阳完成签到,获得积分10
16秒前
暴躁的豆芽完成签到,获得积分10
18秒前
梁云完成签到,获得积分10
18秒前
谷捣猫宁发布了新的文献求助10
18秒前
19秒前
地塞米松磷酸钠完成签到,获得积分10
20秒前
huluwa发布了新的文献求助150
20秒前
大佬应助文武兼备采纳,获得10
20秒前
22秒前
牛阳光发布了新的文献求助10
22秒前
Yao完成签到,获得积分20
23秒前
24秒前
25秒前
非要叫我起个昵称完成签到,获得积分10
25秒前
strive完成签到,获得积分10
25秒前
Orange应助zaozao采纳,获得10
26秒前
27秒前
28秒前
28秒前
竹筏过海应助拾光采纳,获得30
29秒前
29秒前
张瑞雪完成签到 ,获得积分10
29秒前
打打应助显隐采纳,获得10
30秒前
华仔应助万松采纳,获得10
30秒前
怡崽发布了新的文献求助10
31秒前
ajun发布了新的文献求助10
31秒前
LHP完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461317
求助须知:如何正确求助?哪些是违规求助? 3055029
关于积分的说明 9046143
捐赠科研通 2744961
什么是DOI,文献DOI怎么找? 1505775
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264