清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Revealing Networks: Understanding Effective Teacher Practices in AI-Supported Classrooms using Transmodal Ordered Network Analysis

导师 计算机科学 推论 跟踪(教育) 数学教育 学习分析 人工智能 数据科学 教育学 心理学
作者
Conrad Borchers,Yeyu Wang,Shamya Karumbaiah,Muhammad H. Ashiq,David Williamson Shaffer,Vincent Aleven
标识
DOI:10.1145/3636555.3636892
摘要

Learning analytics research increasingly studies classroom learning with AI-based systems through rich contextual data from outside these systems, especially student-teacher interactions. One key challenge in leveraging such data is generating meaningful insights into effective teacher practices. Quantitative ethnography bears the potential to close this gap by combining multimodal data streams into networks of co-occurring behavior that drive insight into favorable learning conditions. The present study uses transmodal ordered network analysis to understand effective teacher practices in relationship to traditional metrics of in-system learning in a mathematics classroom working with AI tutors. Incorporating teacher practices captured by position tracking and human observation codes into modeling significantly improved the inference of how efficiently students improved in the AI tutor beyond a model with tutor log data features only. Comparing teacher practices by student learning rates, we find that students with low learning rates exhibited more hint use after monitoring. However, after an extended visit, students with low learning rates showed learning behavior similar to their high learning rate peers, achieving repeated correct attempts in the tutor. Observation notes suggest conceptual and procedural support differences can help explain visit effectiveness. Taken together, offering early conceptual support to students with low learning rates could make classroom practice with AI tutors more effective. This study advances the scientific understanding of effective teacher practice in classrooms learning with AI tutors and methodologies to make such practices visible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang完成签到 ,获得积分20
19秒前
35秒前
SQL完成签到 ,获得积分10
38秒前
zyjsunye完成签到 ,获得积分0
54秒前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
田様应助sy采纳,获得10
1分钟前
CZLhaust发布了新的文献求助10
1分钟前
1分钟前
vsvsgo完成签到,获得积分10
1分钟前
lovexa完成签到,获得积分10
1分钟前
小西完成签到 ,获得积分10
1分钟前
善学以致用应助CZLhaust采纳,获得10
1分钟前
superZ完成签到 ,获得积分10
2分钟前
蜂蜜柚子完成签到 ,获得积分10
2分钟前
theo完成签到 ,获得积分10
2分钟前
月儿完成签到 ,获得积分10
2分钟前
蔺南风应助呜呜呜采纳,获得10
2分钟前
creep2020完成签到,获得积分10
3分钟前
dreamwalk完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
白白熊完成签到 ,获得积分10
3分钟前
呜呜呜关注了科研通微信公众号
3分钟前
CZLhaust发布了新的文献求助10
3分钟前
粗心的荷花完成签到 ,获得积分10
4分钟前
4分钟前
dracovu完成签到,获得积分10
4分钟前
4分钟前
CodeCraft应助CZLhaust采纳,获得10
4分钟前
sy发布了新的文献求助10
4分钟前
Regulusyang应助呜呜呜采纳,获得10
4分钟前
赧赧完成签到 ,获得积分10
5分钟前
zhangguo完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
陈小青完成签到 ,获得积分10
5分钟前
潇潇完成签到 ,获得积分10
5分钟前
天行健完成签到,获得积分10
6分钟前
6分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244776
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252875
捐赠科研通 2556909
什么是DOI,文献DOI怎么找? 1385460
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626294