可解释性
医学
医学诊断
透明度(行为)
人工智能
结肠镜检查
计算机辅助诊断
读写能力
医学物理学
机器学习
医学教育
计算机科学
放射科
内科学
心理学
结直肠癌
教育学
计算机安全
癌症
作者
Yuichi Mori,Eun Hyo Jin,Dongheon Lee
标识
DOI:10.1016/j.dld.2023.11.033
摘要
Establishing appropriate trust and maintaining a balanced reliance on digital resources are vital for accurate optical diagnoses and effective integration of computer-aided diagnosis (CADx) in colonoscopy. Active learning using diverse polyp image datasets can help in developing precise CADx systems. Enhancing doctors' digital literacy and interpreting their results is crucial. Explainable artificial intelligence (AI) addresses opacity, and textual descriptions, along with AI-generated content, deepen the interpretability of AI-based findings by doctors. AI conveying uncertainties and decision confidence aids doctors' acceptance of results. Optimal AI-doctor collaboration requires improving algorithm performance, transparency, addressing uncertainties, and enhancing doctors' optical diagnostic skills.
科研通智能强力驱动
Strongly Powered by AbleSci AI