亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk Prediction of Diabetic Foot Amputation Using Machine Learning and Explainable Artificial Intelligence

机器学习 医学 接收机工作特性 人工智能 糖尿病足 共病 糖尿病 内科学 计算机科学 内分泌学
作者
Chien Wei Oei,Yam Meng Chan,Xiaojin Zhang,K. H. Leo,Enming Yong,Rhan Chaen Chong,Qiantai Hong,Li Zhang,Ying Pan,Glenn Wei Leong Tan,Malcolm Han Wen Mak
出处
期刊:Journal of diabetes science and technology [SAGE Publishing]
被引量:2
标识
DOI:10.1177/19322968241228606
摘要

Background: Diabetic foot ulcers (DFUs) are serious complications of diabetes which can lead to lower extremity amputations (LEAs). Risk prediction models can identify high-risk patients who can benefit from early intervention. Machine learning (ML) methods have shown promising utility in medical applications. Explainable modeling can help its integration and acceptance. This study aims to develop a risk prediction model using ML algorithms with explainability for LEA in DFU patients. Methods: This study is a retrospective review of 2559 inpatient DFU episodes in a tertiary institution from 2012 to 2017. Fifty-one features including patient demographics, comorbidities, medication, wound characteristics, and laboratory results were reviewed. Outcome measures were the risk of major LEA, minor LEA and any LEA. Machine learning models were developed for each outcome, with model performance evaluated using receiver operating characteristic (ROC) curves, balanced-accuracy and F1-score. SHapley Additive exPlanations (SHAP) was applied to interpret the model for explainability. Results: Model performance for prediction of major, minor, and any LEA event achieved ROC of 0.820, 0.637, and 0.756, respectively, with XGBoost, XGBoost, and Gradient Boosted Trees algorithms demonstrating best results for each model, respectively. Using SHAP, key features that contributed to the predictions were identified for explainability. Total white cell (TWC) count, comorbidity score and red blood cell count contributed highest weightage to major LEA event. Total white cell, eosinophils, and necrotic eschar in the wound contributed most to any LEA event. Conclusions: Machine learning algorithms performed well in predicting the risk of LEA in a patient with DFU. Explainability can help provide clinical insights and identify at-risk patients for early intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈牛逼完成签到 ,获得积分10
1秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
imprint完成签到 ,获得积分10
57秒前
孟筱完成签到 ,获得积分10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
一丢丢完成签到 ,获得积分10
1分钟前
K先生完成签到 ,获得积分10
1分钟前
负责灵萱完成签到 ,获得积分10
1分钟前
2分钟前
lx840518完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
勤奋的立果完成签到 ,获得积分10
2分钟前
小雨点完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
兔兔完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
Misaki完成签到,获得积分10
4分钟前
4分钟前
4分钟前
金葡菌发布了新的文献求助10
4分钟前
阁主完成签到,获得积分10
4分钟前
沉默寻凝完成签到,获得积分10
4分钟前
完美世界应助金葡菌采纳,获得30
4分钟前
彩色德天完成签到 ,获得积分10
5分钟前
庾摇伽完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
wyy完成签到,获得积分10
6分钟前
docyu发布了新的文献求助10
6分钟前
docyu完成签到,获得积分20
6分钟前
大模型应助科研通管家采纳,获得10
6分钟前
幽默微笑完成签到,获得积分10
7分钟前
7分钟前
汉堡包应助docyu采纳,获得10
7分钟前
我是老大应助顺顺利利采纳,获得10
7分钟前
斯文败类应助beetes采纳,获得10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995369
求助须知:如何正确求助?哪些是违规求助? 3535216
关于积分的说明 11267191
捐赠科研通 3275037
什么是DOI,文献DOI怎么找? 1806511
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809782