Risk Prediction of Diabetic Foot Amputation Using Machine Learning and Explainable Artificial Intelligence

机器学习 医学 接收机工作特性 人工智能 糖尿病足 共病 糖尿病 内科学 计算机科学 内分泌学
作者
Chien Wei Oei,Yam Meng Chan,Xiaojin Zhang,K. H. Leo,Enming Yong,Rhan Chaen Chong,Qiantai Hong,Li Zhang,Ying Pan,Glenn Wei Leong Tan,Malcolm Han Wen Mak
出处
期刊:Journal of diabetes science and technology [SAGE]
被引量:2
标识
DOI:10.1177/19322968241228606
摘要

Background: Diabetic foot ulcers (DFUs) are serious complications of diabetes which can lead to lower extremity amputations (LEAs). Risk prediction models can identify high-risk patients who can benefit from early intervention. Machine learning (ML) methods have shown promising utility in medical applications. Explainable modeling can help its integration and acceptance. This study aims to develop a risk prediction model using ML algorithms with explainability for LEA in DFU patients. Methods: This study is a retrospective review of 2559 inpatient DFU episodes in a tertiary institution from 2012 to 2017. Fifty-one features including patient demographics, comorbidities, medication, wound characteristics, and laboratory results were reviewed. Outcome measures were the risk of major LEA, minor LEA and any LEA. Machine learning models were developed for each outcome, with model performance evaluated using receiver operating characteristic (ROC) curves, balanced-accuracy and F1-score. SHapley Additive exPlanations (SHAP) was applied to interpret the model for explainability. Results: Model performance for prediction of major, minor, and any LEA event achieved ROC of 0.820, 0.637, and 0.756, respectively, with XGBoost, XGBoost, and Gradient Boosted Trees algorithms demonstrating best results for each model, respectively. Using SHAP, key features that contributed to the predictions were identified for explainability. Total white cell (TWC) count, comorbidity score and red blood cell count contributed highest weightage to major LEA event. Total white cell, eosinophils, and necrotic eschar in the wound contributed most to any LEA event. Conclusions: Machine learning algorithms performed well in predicting the risk of LEA in a patient with DFU. Explainability can help provide clinical insights and identify at-risk patients for early intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助guantlv采纳,获得10
1秒前
fuzhy发布了新的文献求助10
2秒前
2秒前
夸父完成签到,获得积分10
2秒前
lunarcry完成签到,获得积分10
3秒前
纳米纤维素完成签到,获得积分10
4秒前
lili发布了新的文献求助10
5秒前
夏夏完成签到,获得积分10
5秒前
谢会会完成签到 ,获得积分10
6秒前
果果超幼完成签到 ,获得积分10
7秒前
cs完成签到 ,获得积分10
8秒前
wangyr11完成签到,获得积分10
11秒前
直率小霜完成签到,获得积分10
12秒前
12秒前
华仔应助ZBX采纳,获得10
14秒前
传奇3应助Li采纳,获得10
14秒前
Mito2009完成签到,获得积分10
15秒前
chengzi完成签到,获得积分10
18秒前
19秒前
zyzhnu完成签到,获得积分10
19秒前
快乐的迷勒完成签到,获得积分10
19秒前
tangzelun完成签到,获得积分10
27秒前
科研通AI2S应助要减肥人杰采纳,获得10
27秒前
lili完成签到,获得积分10
27秒前
27秒前
阿Q完成签到,获得积分10
28秒前
Jasper应助SwapExisting采纳,获得10
29秒前
29秒前
ZBX发布了新的文献求助10
33秒前
你好啊发布了新的文献求助10
33秒前
mmr完成签到 ,获得积分10
33秒前
35秒前
35秒前
35秒前
珩溢完成签到 ,获得积分0
37秒前
40秒前
无语的凡梦完成签到,获得积分10
40秒前
41秒前
搜集达人应助曾建采纳,获得10
41秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023