A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 吸附 有机化学
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静心404完成签到,获得积分10
刚刚
CodeCraft应助深呼吸采纳,获得10
刚刚
wuhuhu完成签到 ,获得积分10
刚刚
xxxx发布了新的文献求助10
刚刚
刚刚
tosania完成签到,获得积分10
1秒前
1秒前
guanxun发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
liyi发布了新的文献求助10
1秒前
nico完成签到 ,获得积分10
2秒前
随缘完成签到 ,获得积分10
2秒前
许子健发布了新的文献求助10
2秒前
tosania发布了新的文献求助10
2秒前
Logan完成签到,获得积分10
3秒前
Yoshi完成签到 ,获得积分10
3秒前
CodeCraft应助一年5篇采纳,获得10
3秒前
噜噜晓发布了新的文献求助10
3秒前
绿色心情完成签到 ,获得积分10
4秒前
搜集达人应助Cc采纳,获得10
4秒前
4秒前
4秒前
myirwyo完成签到 ,获得积分10
4秒前
霜之哀伤发布了新的文献求助30
4秒前
pqq发布了新的文献求助10
5秒前
面缺陷完成签到,获得积分10
5秒前
5秒前
SciGPT应助长颈鹿没有脖子采纳,获得10
5秒前
华仔应助kndr10采纳,获得10
5秒前
李牧发布了新的文献求助10
6秒前
祝愿完成签到,获得积分10
6秒前
7秒前
纸质超人发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
风趣的觅山完成签到,获得积分10
8秒前
wanci应助STDRM采纳,获得10
8秒前
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646