A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 吸附 有机化学
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Owen应助阔达的凡采纳,获得10
1秒前
3秒前
华仔应助llf采纳,获得10
5秒前
晴朗完成签到,获得积分10
5秒前
Orange应助枯藤老柳树采纳,获得10
5秒前
Nightangie发布了新的文献求助10
6秒前
LJM完成签到,获得积分10
6秒前
烟花应助熬夜的桃子采纳,获得10
7秒前
方远锋发布了新的文献求助10
7秒前
7秒前
8秒前
斯文败类应助Yimingfang采纳,获得10
8秒前
HH发布了新的文献求助10
8秒前
你猜完成签到,获得积分10
9秒前
gwd发布了新的文献求助10
10秒前
11秒前
京津冀jjj完成签到,获得积分20
11秒前
鑫叶发布了新的文献求助20
12秒前
香蕉觅云应助玩命的行云采纳,获得10
12秒前
刘洋完成签到 ,获得积分10
14秒前
一年半太久只争朝夕完成签到,获得积分10
14秒前
Dr.Lawrence应助研友_LJGoXn采纳,获得10
15秒前
15秒前
科研通AI5应助香香香采纳,获得10
16秒前
威武白秋完成签到,获得积分10
17秒前
18秒前
雪掩的往事完成签到,获得积分10
18秒前
烟花应助yy采纳,获得20
18秒前
18秒前
CipherSage应助BreezyGallery采纳,获得10
19秒前
慕青应助冯小Q采纳,获得10
19秒前
科研小民工应助默默三毒采纳,获得30
20秒前
火星上的菲鹰应助Nathaniel采纳,获得10
21秒前
21秒前
22秒前
____(fg)发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760