A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 吸附 有机化学
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虎帅完成签到,获得积分20
刚刚
邹小天发布了新的文献求助10
刚刚
指导灰完成签到,获得积分10
刚刚
刚刚
Boooooo发布了新的文献求助10
1秒前
沉默烨霖发布了新的文献求助10
1秒前
4秒前
宁宁发布了新的文献求助10
4秒前
吕小布发布了新的文献求助10
4秒前
虚心的路人完成签到 ,获得积分10
5秒前
5秒前
5秒前
七七七七发布了新的文献求助10
5秒前
upupup完成签到,获得积分10
6秒前
小龚发布了新的文献求助10
6秒前
6秒前
7秒前
Shirley完成签到,获得积分10
7秒前
8秒前
hang发布了新的文献求助10
8秒前
Fe2O3完成签到,获得积分10
8秒前
红炉点血发布了新的文献求助10
9秒前
科研通AI2S应助CIXI采纳,获得10
9秒前
硬膜之下完成签到,获得积分10
9秒前
zzc完成签到,获得积分10
9秒前
科研通AI2S应助明德zhuang采纳,获得50
10秒前
uouuo完成签到 ,获得积分10
10秒前
赵彩梅完成签到,获得积分10
10秒前
李健的小迷弟应助邹小天采纳,获得10
11秒前
Lucas应助自然书桃采纳,获得30
11秒前
11秒前
肺克不废完成签到,获得积分10
12秒前
甜甜海豚发布了新的文献求助10
13秒前
13秒前
梦断西楼完成签到,获得积分10
13秒前
14秒前
张硕发布了新的文献求助10
14秒前
yanwei完成签到,获得积分10
14秒前
15秒前
Aaron完成签到,获得积分10
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054574
求助须知:如何正确求助?哪些是违规求助? 2711556
关于积分的说明 7426825
捐赠科研通 2356150
什么是DOI,文献DOI怎么找? 1247719
科研通“疑难数据库(出版商)”最低求助积分说明 606494
版权声明 596079