A Machine Learning-Driven Comparison of Ion Images Obtained by MALDI and MALDI-2 Mass Spectrometry Imaging

化学 质谱成像 马尔迪成像 质谱法 电离 基质辅助激光解吸/电离 离子 质谱 色谱法 分析物 分析化学(期刊) 解吸 吸附 有机化学
作者
Tassiani Sarretto,Wil Gardner,Daniel Brungs,Sarbar Napaki,Paul J. Pigram,Shane R. Ellis
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (3): 466-475 被引量:1
标识
DOI:10.1021/jasms.3c00357
摘要

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enables label-free imaging of biomolecules in biological tissues. However, many species remain undetected due to their poor ionization efficiencies. MALDI-2 (laser-induced post-ionization) is the most widely used post-ionization method for improving analyte ionization efficiencies. Mass spectra acquired using MALDI-2 constitute a combination of ions generated by both MALDI and MALDI-2 processes. Until now, no studies have focused on a detailed comparison between the ion images (as opposed to the generated m/z values) produced by MALDI and MALDI-2 for mass spectrometry imaging (MSI) experiments. Herein, we investigated the ion images produced by both MALDI and MALDI-2 on the same tissue section using correlation analysis (to explore similarities in ion images for ions common to both MALDI and MALDI-2) and a deep learning approach. For the latter, we used an analytical workflow based on the Xception convolutional neural network, which was originally trained for human-like natural image classification but which we adapted to elucidate similarities and differences in ion images obtained using the two MSI techniques. Correlation analysis demonstrated that common ions yielded similar spatial distributions with low-correlation species explained by either poor signal intensity in MALDI or the generation of additional unresolved signals using MALDI-2. Using the Xception-based method, we identified many regions in the t-SNE space of spatially similar ion images containing MALDI and MALDI-2-related signals. More notably, the method revealed distinct regions containing only MALDI-2 ion images with unique spatial distributions that were not observed using MALDI. These data explicitly demonstrate the ability of MALDI-2 to reveal molecular features and patterns as well as histological regions of interest that are not visible when using conventional MALDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MJS完成签到,获得积分10
1秒前
科研通AI6应助田tttt采纳,获得10
1秒前
bingxiaobing完成签到,获得积分10
1秒前
窗外飞仙发布了新的文献求助10
2秒前
国色不染尘完成签到,获得积分10
2秒前
云兮发布了新的文献求助30
3秒前
cjk发布了新的文献求助30
5秒前
bingxiaobing发布了新的文献求助10
5秒前
7秒前
想睡觉的小笼包完成签到 ,获得积分10
9秒前
兔子发布了新的文献求助10
10秒前
桐桐应助Bosen采纳,获得10
10秒前
10秒前
告白气球完成签到,获得积分20
10秒前
11秒前
辛勤的发箍完成签到,获得积分10
11秒前
李健的小迷弟应助郭勇慧采纳,获得10
12秒前
科研通AI6应助史淼荷采纳,获得40
13秒前
窗外飞仙完成签到,获得积分10
13秒前
君君发布了新的文献求助10
14秒前
Hello应助xz采纳,获得10
15秒前
16秒前
浮游应助Jenishining采纳,获得10
16秒前
17秒前
桐桐应助君君采纳,获得10
18秒前
18秒前
凌成败完成签到,获得积分10
19秒前
浮游应助wjp采纳,获得10
19秒前
百里瓶窑完成签到,获得积分10
20秒前
21秒前
22秒前
彭于晏应助西呱呱采纳,获得10
22秒前
Bosen发布了新的文献求助10
23秒前
Lyuoah发布了新的文献求助10
23秒前
SciGPT应助zhihe采纳,获得10
23秒前
25秒前
25秒前
25秒前
彭于晏应助乘风采纳,获得10
27秒前
感性的穆发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353314
求助须知:如何正确求助?哪些是违规求助? 4485948
关于积分的说明 13964751
捐赠科研通 4386198
什么是DOI,文献DOI怎么找? 2409787
邀请新用户注册赠送积分活动 1402057
关于科研通互助平台的介绍 1375866