人工智能
听诊
机器学习
触诊
计算机科学
中医药
预处理器
医学
替代医学
病理
放射科
作者
Dingcheng Tian,Chen Wei-hao,Dechao Xu,Lisheng Xu,Gang Xu,Yaochen Guo,Yu‐Dong Yao
标识
DOI:10.1016/j.compbiomed.2024.108074
摘要
Traditional Chinese medicine (TCM) is an essential part of the Chinese medical system and is recognized by the World Health Organization as an important alternative medicine. As an important part of TCM, TCM diagnosis is a method to understand a patient's illness, analyze its state, and identify syndromes. In the long-term clinical diagnosis practice of TCM, four fundamental and effective diagnostic methods of inspection, auscultation-olfaction, inquiry, and palpation (IAOIP) have been formed. However, the diagnostic information in TCM is diverse, and the diagnostic process depends on doctors' experience, which is subject to a high-level subjectivity. At present, the research on the automated diagnosis of TCM based on machine learning is booming. Machine learning, which includes deep learning, is an essential part of artificial intelligence (AI), which provides new ideas for the objective and AI-related research of TCM. This paper aims to review and summarize the current research status of machine learning in TCM diagnosis. First, we review some key factors for the application of machine learning in TCM diagnosis, including data, data preprocessing, machine learning models, and evaluation metrics. Second, we review and summarize the research and applications of machine learning methods in TCM IAOIP and the synthesis of the four diagnostic methods. Finally, we discuss the challenges and research directions of using machine learning methods for TCM diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI