A review of traditional Chinese medicine diagnosis using machine learning: Inspection, auscultation-olfaction, inquiry, and palpation

人工智能 听诊 机器学习 触诊 计算机科学 中医药 预处理器 医学 替代医学 病理 放射科
作者
Dingcheng Tian,Chen Wei-hao,Dechao Xu,Lisheng Xu,Gang Xu,Yaochen Guo,Yu‐Dong Yao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 108074-108074 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108074
摘要

Traditional Chinese medicine (TCM) is an essential part of the Chinese medical system and is recognized by the World Health Organization as an important alternative medicine. As an important part of TCM, TCM diagnosis is a method to understand a patient's illness, analyze its state, and identify syndromes. In the long-term clinical diagnosis practice of TCM, four fundamental and effective diagnostic methods of inspection, auscultation-olfaction, inquiry, and palpation (IAOIP) have been formed. However, the diagnostic information in TCM is diverse, and the diagnostic process depends on doctors' experience, which is subject to a high-level subjectivity. At present, the research on the automated diagnosis of TCM based on machine learning is booming. Machine learning, which includes deep learning, is an essential part of artificial intelligence (AI), which provides new ideas for the objective and AI-related research of TCM. This paper aims to review and summarize the current research status of machine learning in TCM diagnosis. First, we review some key factors for the application of machine learning in TCM diagnosis, including data, data preprocessing, machine learning models, and evaluation metrics. Second, we review and summarize the research and applications of machine learning methods in TCM IAOIP and the synthesis of the four diagnostic methods. Finally, we discuss the challenges and research directions of using machine learning methods for TCM diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qjq发布了新的文献求助10
1秒前
3秒前
orixero应助果蝇宝宝采纳,获得10
3秒前
4秒前
msw发布了新的文献求助10
5秒前
yeerenn完成签到 ,获得积分10
5秒前
香蕉觅云应助Bressanone采纳,获得10
5秒前
Captainhana完成签到,获得积分10
6秒前
疯狂的珊发布了新的文献求助30
6秒前
8秒前
研友_nPol2L完成签到,获得积分20
9秒前
10秒前
修仙完成签到,获得积分0
11秒前
皮皮发布了新的文献求助10
12秒前
想睡觉的小笼包完成签到 ,获得积分10
14秒前
欢呼雨兰发布了新的文献求助10
15秒前
16秒前
蜂蜜柚子完成签到 ,获得积分10
16秒前
19秒前
qjq完成签到,获得积分10
19秒前
20秒前
msw完成签到,获得积分10
20秒前
22秒前
23秒前
丘比特应助冷傲玫瑰采纳,获得10
23秒前
23秒前
24秒前
Bressanone发布了新的文献求助10
24秒前
大地发布了新的文献求助10
25秒前
小二郎应助ZY采纳,获得20
25秒前
28秒前
28秒前
28秒前
麦可完成签到,获得积分20
28秒前
sunshitao发布了新的文献求助10
29秒前
nn发布了新的文献求助10
29秒前
31秒前
烟花应助科研通管家采纳,获得10
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
景辣条应助科研通管家采纳,获得10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792465
关于积分的说明 7802933
捐赠科研通 2448664
什么是DOI,文献DOI怎么找? 1302761
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237