Large-Scale Language Models for PHM in Railway Systems - Potential Applications, Limitations, and Solutions

比例(比率) 计算机科学 地理 地图学
作者
Huan Wang,Yan‐Fu Li
出处
期刊:Lecture notes in electrical engineering 卷期号:: 591-599
标识
DOI:10.1007/978-981-99-9311-6_59
摘要

Prognostics and health management (PHM) technology, by monitoring the faults and degradation of railway systems, predicting the remaining useful life of equipment, and providing maintenance recommendations, can effectively improve the safety and reliability of railway systems. In recent years, large-scale language models (LLMs) like ChatGPT have achieved groundbreaking accomplishments and led a new wave of innovation in various fields. Consequently, the potential impacts of LLMs on PHM applications in railway systems are worth researching and exploring. This paper first introduces the basic principles and technical characteristics of LLMs. Subsequently, it analyzes the potential impacts of these models in PHM applications within railway systems, exploring how they can be applied in various processes of PHM, including operations management, condition monitoring, maintenance recommendations, and knowledge management, to enhance the effectiveness of PHM. Moreover, this study analyzes the limitations of LLMs in PHM applications within railway systems from a practical perspective and discusses relevant solutions accordingly. Based on these solutions, these models are expected to become more specialized and intelligent, playing a crucial role in the maintenance and management of railway systems. Finally, this paper provides an outlook on LLMs’ prospects and research directions in PHM applications within railway systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
迅速谷槐完成签到 ,获得积分10
刚刚
领导范儿应助乐生采纳,获得10
刚刚
niuma发布了新的文献求助10
1秒前
Johnpick发布了新的文献求助10
1秒前
怡然的幻灵完成签到,获得积分10
2秒前
2秒前
zyq应助天际采纳,获得10
2秒前
小里发布了新的文献求助10
2秒前
2秒前
李爱国应助看看采纳,获得10
2秒前
3秒前
科研通AI5应助开朗孤兰采纳,获得10
3秒前
3秒前
慕青应助开放芷天采纳,获得10
4秒前
4秒前
5秒前
6秒前
hexiao发布了新的文献求助10
6秒前
微笑的寒梦完成签到,获得积分10
6秒前
Owen应助马慧慧采纳,获得10
6秒前
852应助钢笔采纳,获得10
6秒前
7秒前
8秒前
Tyj完成签到,获得积分10
8秒前
gg2002发布了新的文献求助10
8秒前
9秒前
郭翔完成签到,获得积分10
9秒前
动听的代曼完成签到,获得积分10
10秒前
谦让的萤发布了新的文献求助80
11秒前
11秒前
平常的毛豆应助光亮的莺采纳,获得10
11秒前
11秒前
12秒前
有点小is完成签到 ,获得积分10
12秒前
12秒前
啊是是是完成签到,获得积分10
12秒前
12秒前
打打应助111采纳,获得10
13秒前
渣渣慧发布了新的文献求助10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059