Radar/visual fusion with fuse-before-track strategy for low altitude non-cooperative sense and avoid

保险丝(电气) 感应(电子) 雷达 低空 磁道(磁盘驱动器) 融合 计算机科学 航空学 高度(三角形) 航空航天工程 计算机视觉 人工智能 工程类 电信 电气工程 数学 哲学 操作系统 语言学 几何学
作者
Federica Vitiello,Flavia Causa,Roberto Opromolla,Giancarmine Fasano
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:146: 108946-108946 被引量:8
标识
DOI:10.1016/j.ast.2024.108946
摘要

Non-cooperative Sense and Avoid is a critical technology for the safety and autonomy of Unmanned Aerial Vehicles (UAV). Standalone sensing solutions, i.e., only based on either visual cameras or radars, encounter challenges especially for vehicles flying at low altitude. To overcome this limit, sensor fusion strategies can play a key role. In this framework, this paper proposes a two-step radar/visual sensor fusion approach taking place both at detection and tracking level. The first step, named "Fuse-before-Track", consists in jointly using radar information and visual detections (provided by Convolutional Neural Network-based detectors) to remove uninteresting radar echoes thus improving ground clutter removal and speeding up the radar processing pipeline. At the second level, tracking takes place by exploiting the previously retrieved (confirmed) radar measures and fusing visual detections to improve the solution accuracy. The proposed approach is tested on data collected during experimental flight tests where a ground-fixed multi-sensor setup (integrating a low size weight and power radar and a daylight camera) is used to detect and track a small UAV manually piloted to carry out approaching manoeuvres. Detection and tracking performance is assessed using, as a benchmark, a cm-level relative positioning solution retrieved by means of Carrier Phase Differential GNSS techniques. The implemented detection-level fusion approach ensures radar detection accuracy of meter level and meter-per-second level on range and range rate, respectively. In addition, the second level of fusion allows attaining sub-degree level errors in the angular and angular rates estimates at a tracking stage. Tracking data are finally used for conflict threat assessment, i.e., to get estimates of the distance and time at closest point of approach, with mean errors on the former of about 10 m in most encounters when the latter falls below 50 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dreamode完成签到,获得积分10
2秒前
思源应助默默友儿采纳,获得10
3秒前
叶叶叶完成签到,获得积分10
3秒前
星辰大海应助Cyyyy采纳,获得10
4秒前
fuuu发布了新的文献求助10
5秒前
壮观的寒松完成签到,获得积分10
7秒前
8秒前
Sean完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
卷芽大王完成签到,获得积分10
12秒前
13秒前
碧蓝绮山完成签到 ,获得积分20
14秒前
干净冬莲完成签到,获得积分10
14秒前
15秒前
15秒前
不安听露完成签到 ,获得积分10
16秒前
852应助张颖采纳,获得10
16秒前
大个应助野性的映安采纳,获得10
19秒前
流雨清竹发布了新的文献求助10
19秒前
19秒前
孙昕悦发布了新的文献求助10
20秒前
11111112222完成签到,获得积分10
22秒前
君衡完成签到 ,获得积分10
22秒前
23秒前
小迷糊完成签到,获得积分10
24秒前
25秒前
小蘑菇应助ww采纳,获得50
25秒前
量子星尘发布了新的文献求助10
28秒前
科研通AI5应助孙昕悦采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
燕子应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096328
求助须知:如何正确求助?哪些是违规求助? 4308990
关于积分的说明 13426101
捐赠科研通 4136081
什么是DOI,文献DOI怎么找? 2265889
邀请新用户注册赠送积分活动 1269182
关于科研通互助平台的介绍 1205344