Deep learning in statistical downscaling for deriving high spatial resolution gridded meteorological data: A systematic review

缩小尺度 计算机科学 比例(比率) 卷积神经网络 深度学习 人工神经网络 人工智能 机器学习 数据挖掘 遥感 气象学 地理 地图学 降水
作者
Yongjian Sun,Kefeng Deng,Kaijun Ren,Jia Liu,Chongjiu Deng,Yongjun Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 14-38 被引量:36
标识
DOI:10.1016/j.isprsjprs.2023.12.011
摘要

Nowadays, meteorological data plays a crucial role in various fields such as remote sensing, weather forecasting, climate change, and agriculture. The regional and local studies call for high spatial resolution gridded meteorological data to identify refined details, which however is generally limited due to the models, platforms, sensors, etc. Downscaling has been a significant and practical way to improve spatial resolution. In recent years, with superior feature extraction and expression abilities, deep learning (DL) has outperformed traditional methods in various areas, and exhibits huge potential to establish a complicated mapping between large-scale and local-scale meteorological data. Therefore, this paper provides a systematic review of DL in statistical downscaling for deriving high spatial resolution gridded meteorological data. This review first presents the background, including a taxonomy of downscaling methods, the role of DL in statistical downscaling, and the analogy between downscaling and image super-resolution. It shows evidence of how downscaling can benefit from DL, particularly super-resolution networks. Subsequently, this review focuses on the recent development of the DL-based statistical downscaling of gridded meteorological data, especially the deep architectures, including convolutional neural networks to capture the spatial dependencies of meteorological variables, recurrent neural networks to reveal the temporal states from time series, and generative adversarial networks to facilitate the reconstruction of high-frequency details, as well as the major structure residual learning and attention mechanism. In addition, this review demonstrates the specific issues towards downscaling, including scaling factors, spatial–temporal and variable correlations, and paired datasets construction, and then gives a comprehensive summary of the status of datasets, toolsets and metrics. The future challenges from the perspective of unsupervised models, transformer architecture, data fusion, physical-informed learning, generalization capacity, and uncertainty quantification for downscaling are finally discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TTRO发布了新的文献求助10
1秒前
AARON完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
小丸子发布了新的文献求助10
5秒前
yyyyyyy发布了新的文献求助10
5秒前
5秒前
Lucas应助赵赵采纳,获得10
8秒前
TLL完成签到,获得积分10
8秒前
杠赛来完成签到,获得积分10
9秒前
Owen应助WANG采纳,获得10
11秒前
华仔应助yangyangyang采纳,获得10
11秒前
12秒前
13秒前
13秒前
科研通AI2S应助阿俊1212采纳,获得10
13秒前
英俊的铭应助Ai_niyou采纳,获得10
15秒前
PINk发布了新的文献求助10
16秒前
16秒前
wdy111应助a9902002采纳,获得10
16秒前
可爱迪发布了新的文献求助10
17秒前
大黄发布了新的文献求助10
17秒前
满天星发布了新的文献求助10
17秒前
18秒前
19秒前
xun完成签到,获得积分10
19秒前
桐桐应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
21秒前
wanci应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980299
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220587
捐赠科研通 3261687
什么是DOI,文献DOI怎么找? 1800886
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807249