亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning in statistical downscaling for deriving high spatial resolution gridded meteorological data: A systematic review

缩小尺度 计算机科学 比例(比率) 卷积神经网络 深度学习 人工神经网络 人工智能 机器学习 数据挖掘 遥感 气象学 地理 地图学 降水
作者
Yongjian Sun,Kefeng Deng,Kaijun Ren,Jia Liu,Chongjiu Deng,Yongjun Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 14-38 被引量:62
标识
DOI:10.1016/j.isprsjprs.2023.12.011
摘要

Nowadays, meteorological data plays a crucial role in various fields such as remote sensing, weather forecasting, climate change, and agriculture. The regional and local studies call for high spatial resolution gridded meteorological data to identify refined details, which however is generally limited due to the models, platforms, sensors, etc. Downscaling has been a significant and practical way to improve spatial resolution. In recent years, with superior feature extraction and expression abilities, deep learning (DL) has outperformed traditional methods in various areas, and exhibits huge potential to establish a complicated mapping between large-scale and local-scale meteorological data. Therefore, this paper provides a systematic review of DL in statistical downscaling for deriving high spatial resolution gridded meteorological data. This review first presents the background, including a taxonomy of downscaling methods, the role of DL in statistical downscaling, and the analogy between downscaling and image super-resolution. It shows evidence of how downscaling can benefit from DL, particularly super-resolution networks. Subsequently, this review focuses on the recent development of the DL-based statistical downscaling of gridded meteorological data, especially the deep architectures, including convolutional neural networks to capture the spatial dependencies of meteorological variables, recurrent neural networks to reveal the temporal states from time series, and generative adversarial networks to facilitate the reconstruction of high-frequency details, as well as the major structure residual learning and attention mechanism. In addition, this review demonstrates the specific issues towards downscaling, including scaling factors, spatial–temporal and variable correlations, and paired datasets construction, and then gives a comprehensive summary of the status of datasets, toolsets and metrics. The future challenges from the perspective of unsupervised models, transformer architecture, data fusion, physical-informed learning, generalization capacity, and uncertainty quantification for downscaling are finally discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Elen1987采纳,获得10
3秒前
4秒前
科研通AI6.1应助jy采纳,获得10
16秒前
17秒前
22秒前
Lucas应助KKLUV采纳,获得10
24秒前
27秒前
jy发布了新的文献求助10
34秒前
42秒前
伊力扎提完成签到,获得积分10
49秒前
56秒前
59秒前
1分钟前
孙泉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
852应助zslg采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
zslg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
如意秋珊完成签到 ,获得积分10
3分钟前
3分钟前
畅快甜瓜发布了新的文献求助30
3分钟前
3分钟前
3分钟前
CodeCraft应助畅快甜瓜采纳,获得10
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615