Deep learning in statistical downscaling for deriving high spatial resolution gridded meteorological data: A systematic review

缩小尺度 计算机科学 比例(比率) 卷积神经网络 深度学习 人工神经网络 人工智能 机器学习 数据挖掘 遥感 气象学 地理 地图学 降水
作者
Yongjian Sun,Kefeng Deng,Kaijun Ren,Jia Liu,Chongjiu Deng,Yongjun Jin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 14-38 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.12.011
摘要

Nowadays, meteorological data plays a crucial role in various fields such as remote sensing, weather forecasting, climate change, and agriculture. The regional and local studies call for high spatial resolution gridded meteorological data to identify refined details, which however is generally limited due to the models, platforms, sensors, etc. Downscaling has been a significant and practical way to improve spatial resolution. In recent years, with superior feature extraction and expression abilities, deep learning (DL) has outperformed traditional methods in various areas, and exhibits huge potential to establish a complicated mapping between large-scale and local-scale meteorological data. Therefore, this paper provides a systematic review of DL in statistical downscaling for deriving high spatial resolution gridded meteorological data. This review first presents the background, including a taxonomy of downscaling methods, the role of DL in statistical downscaling, and the analogy between downscaling and image super-resolution. It shows evidence of how downscaling can benefit from DL, particularly super-resolution networks. Subsequently, this review focuses on the recent development of the DL-based statistical downscaling of gridded meteorological data, especially the deep architectures, including convolutional neural networks to capture the spatial dependencies of meteorological variables, recurrent neural networks to reveal the temporal states from time series, and generative adversarial networks to facilitate the reconstruction of high-frequency details, as well as the major structure residual learning and attention mechanism. In addition, this review demonstrates the specific issues towards downscaling, including scaling factors, spatial–temporal and variable correlations, and paired datasets construction, and then gives a comprehensive summary of the status of datasets, toolsets and metrics. The future challenges from the perspective of unsupervised models, transformer architecture, data fusion, physical-informed learning, generalization capacity, and uncertainty quantification for downscaling are finally discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzh完成签到,获得积分10
1秒前
科研通AI2S应助稻草人采纳,获得30
1秒前
凡趣智简发布了新的文献求助200
2秒前
慕青应助碗碗采纳,获得10
2秒前
3秒前
柴犬发布了新的文献求助10
3秒前
4秒前
陈晗予完成签到,获得积分10
4秒前
wzh发布了新的文献求助10
4秒前
5秒前
6秒前
叁壹捌发布了新的文献求助10
7秒前
8秒前
GGbond发布了新的文献求助10
8秒前
asd发布了新的文献求助10
8秒前
9秒前
9秒前
CodeCraft应助LI采纳,获得10
9秒前
candy丫丫发布了新的文献求助30
10秒前
皮皮发布了新的文献求助30
10秒前
蒋若风完成签到,获得积分10
10秒前
蜡笔小新完成签到,获得积分10
12秒前
13秒前
研友_LX66qZ发布了新的文献求助10
13秒前
liubai完成签到 ,获得积分10
14秒前
14秒前
15秒前
李麟完成签到,获得积分20
15秒前
19秒前
沛廷发布了新的文献求助10
19秒前
安静碧灵发布了新的文献求助10
20秒前
ccm应助1953采纳,获得10
20秒前
22秒前
25秒前
25秒前
沛廷完成签到,获得积分10
25秒前
垚垚发布了新的文献求助10
26秒前
Ava应助李麟采纳,获得10
26秒前
Orange应助小巧热狗采纳,获得30
26秒前
科研通AI2S应助陶1122采纳,获得10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210