亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities

预言 可解释性 失效物理学 背景(考古学) 数据驱动 可靠性(半导体) 领域(数学) 数据科学 数据质量 计算机科学 质量(理念) 预测建模 风险分析(工程) 数据挖掘 工程类 机器学习 人工智能 物理 医学 古生物学 公制(单位) 功率(物理) 运营管理 数学 量子力学 生物 纯数学 哲学 认识论
作者
Huiqin Li,Zhengxin Zhang,Tianmei Li,Xiaosheng Si
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:209: 111120-111120 被引量:214
标识
DOI:10.1016/j.ymssp.2024.111120
摘要

Remaining useful life (RUL) prediction, known as 'prognostics', has long been recognized as one of the key technologies in prognostics and health management (PHM) to maintain the safety and reliability of the system, and reduce the operating and management costs. Particularly, thanks to great advances in sensing and condition monitoring techniques, data-driven RUL prediction has attracted much attention and various data-driven RUL prediction methods have been reported. Despite the extensive studies on data-driven RUL prediction methods, the successful applications of such methods depend heavily on the volume and quality of the data, and purely data-driven methods possibly generate physically infeasible/inconsistent RUL prediction results and have the limited generalizability and interpretability. It is noted that there is an increasing consensus that embedding the physics or the domain knowledge into the data-driven methods and developing physics-informed data-driven methods will hold promise to improve the interpretability and efficiency of the RUL prediction results and lower the requirement of the volume and quality of the data. In this context, physics-informed data-driven RUL prediction has become an emerging topic in the prognostics field. However, there has not been a systematic review particularly focused on this emerging topic. To fill this gap, this paper reviews recent developments of physics-informed data-driven RUL prediction methods. In this review, current methods fallen into this type are broadly divided into three categories, i.e. physical model and data fusion methods, stochastic degradation model based methods, and physics-informed machine learning (PIML) based methods. Particularly, this review is centered on the PIML based methods since the fast development of such methods have been witnessed in the past five years. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of physics-informed data-driven RUL prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文胡萝卜完成签到 ,获得积分10
17秒前
holyholy完成签到,获得积分20
22秒前
holyholy发布了新的文献求助10
25秒前
红娘发布了新的文献求助10
29秒前
文艺怀蝶发布了新的文献求助10
32秒前
奔跑石小猛完成签到,获得积分10
34秒前
50秒前
Becky完成签到 ,获得积分10
50秒前
1分钟前
文艺怀蝶完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
丸子完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助Qiaoguliang采纳,获得10
2分钟前
2分钟前
Qiaoguliang完成签到,获得积分10
2分钟前
江枫渔火完成签到 ,获得积分10
2分钟前
隐形的绿凝完成签到,获得积分10
3分钟前
3分钟前
阿绵发布了新的文献求助10
3分钟前
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
科研之路完成签到,获得积分10
3分钟前
Hello应助阿绵采纳,获得10
3分钟前
Qiaoguliang发布了新的文献求助10
3分钟前
勤奋忆寒发布了新的文献求助10
3分钟前
勤奋忆寒完成签到,获得积分10
3分钟前
3080完成签到 ,获得积分10
3分钟前
钱都来完成签到 ,获得积分10
3分钟前
王文艺发布了新的文献求助10
3分钟前
今后应助科研通管家采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522696
求助须知:如何正确求助?哪些是违规求助? 4613647
关于积分的说明 14539100
捐赠科研通 4551340
什么是DOI,文献DOI怎么找? 2494190
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446527