A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities

预言 可解释性 失效物理学 背景(考古学) 数据驱动 可靠性(半导体) 领域(数学) 数据科学 数据质量 计算机科学 质量(理念) 预测建模 风险分析(工程) 数据挖掘 工程类 机器学习 人工智能 物理 哲学 古生物学 功率(物理) 公制(单位) 纯数学 认识论 生物 医学 量子力学 数学 运营管理
作者
Huiqin Li,Zhengxin Zhang,Tianmei Li,Xiaosheng Si
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:209: 111120-111120 被引量:92
标识
DOI:10.1016/j.ymssp.2024.111120
摘要

Remaining useful life (RUL) prediction, known as 'prognostics', has long been recognized as one of the key technologies in prognostics and health management (PHM) to maintain the safety and reliability of the system, and reduce the operating and management costs. Particularly, thanks to great advances in sensing and condition monitoring techniques, data-driven RUL prediction has attracted much attention and various data-driven RUL prediction methods have been reported. Despite the extensive studies on data-driven RUL prediction methods, the successful applications of such methods depend heavily on the volume and quality of the data, and purely data-driven methods possibly generate physically infeasible/inconsistent RUL prediction results and have the limited generalizability and interpretability. It is noted that there is an increasing consensus that embedding the physics or the domain knowledge into the data-driven methods and developing physics-informed data-driven methods will hold promise to improve the interpretability and efficiency of the RUL prediction results and lower the requirement of the volume and quality of the data. In this context, physics-informed data-driven RUL prediction has become an emerging topic in the prognostics field. However, there has not been a systematic review particularly focused on this emerging topic. To fill this gap, this paper reviews recent developments of physics-informed data-driven RUL prediction methods. In this review, current methods fallen into this type are broadly divided into three categories, i.e. physical model and data fusion methods, stochastic degradation model based methods, and physics-informed machine learning (PIML) based methods. Particularly, this review is centered on the PIML based methods since the fast development of such methods have been witnessed in the past five years. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of physics-informed data-driven RUL prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Le发布了新的文献求助30
刚刚
乖猫要努力应助悉达多采纳,获得10
刚刚
Cyyyy发布了新的文献求助10
1秒前
Felix发布了新的文献求助10
1秒前
ningmengcao完成签到,获得积分10
1秒前
1秒前
tian完成签到,获得积分10
1秒前
Qh关注了科研通微信公众号
2秒前
2秒前
过柱子完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
胡须发布了新的文献求助30
4秒前
李健的小迷弟应助HEANZ采纳,获得10
6秒前
顺利安发布了新的文献求助10
6秒前
obito发布了新的文献求助10
7秒前
7秒前
卡卡龍特发布了新的文献求助10
7秒前
hucchongzi应助科研爱好者采纳,获得10
7秒前
8秒前
8秒前
七月完成签到,获得积分10
9秒前
10秒前
www完成签到,获得积分10
10秒前
新青年发布了新的文献求助30
10秒前
10秒前
10秒前
xiuxiu发布了新的文献求助20
11秒前
江生完成签到,获得积分20
12秒前
12秒前
Rubby应助胡须采纳,获得10
12秒前
希望天下0贩的0应助jialin采纳,获得10
12秒前
威武香水关注了科研通微信公众号
12秒前
angle_alone发布了新的文献求助10
13秒前
科研通AI2S应助卡卡龍特采纳,获得10
14秒前
14秒前
XHH1994发布了新的文献求助10
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113