Co-Administration of Inhibitors of HDAC6 and SGLT2 in Murine HFpEF Models Results in Additive Improvements in Cardiac Structural and Functional Measures

恩帕吉菲 医学 舒张期 内科学 射血分数保留的心力衰竭 心脏病学 心力衰竭 药理学 糖尿病 血压 内分泌学 2型糖尿病
作者
Farshad Farshidfar,Aliya Zeng,Reva Shenwai,Matthew Kozubov,Iris Wu,Sara Ranjbarvaziri,Amara Greer-Short,Anastasiia Budan,Emma Xu,Cindy Li,Malcolm Pell,Charles Mackay,Xiaomei Song,James R. Priest,Gretchen M. Argast,Jin Yang,Timothy Hoey
出处
期刊:Journal of Cardiac Failure [Elsevier]
卷期号:30 (1): 164-164
标识
DOI:10.1016/j.cardfail.2023.10.114
摘要

Background HFpEF is a form of heart failure characterized by diastolic dysfunction and associated with high morbidity, mortality and significant unmet need. Previously, we have demonstrated that selective inhibition of histone deacetylase 6 (HDAC6) has positive effects on diastolic dysfunction and left ventricular thickness of the heart, as well as overall improvements in systemic inflammation and metabolism, in a mouse model of HFpEF using a high-fat diet (HFD) and L-NAME. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor approved by the FDA for HFpEF patients, works as expected in this model, confirming the potential clinical translatability of results seen with HDAC6 inhibitors. In head-to-head studies, the beneficial effects of HDAC6 inhibition have been shown to be comparable to empagliflozin, while demonstrating a distinct mechanism of action in gene expression analysis. TN-301, a highly selective HDAC6 inhibitor has been advanced into clinical development for the potential treatment of HFpEF. Purpose In this study, we sought to investigate the additive or synergistic effects of combining HDAC6 and SGLT2 inhibition to improve cardiac function in a two-hit mouse model of HFpEF. Methods and Results Low doses of TYA-018 (a highly selective HDAC6 inhibitor) and empagliflozin were co-administered in our HFpEF model. We then assessed functional measures and cardiac gene expression in hearts from treated and control HFpEF mice. In our mouse model of HFpEF, pharmacological inhibition of TYA-018 results in extensive cardiac functional and structural improvements, including diastolic dysfunction and LV mass. Co-administration of TYA-018 and empagliflozin resulted in additive cardiac functional and structural measures vs. the single agents. Of note, multiple measures of diastolic dysfunction (e.g., E/e’) were returned to baseline values by combination treatment in HFpEF mice similar to those in WT mice. Gene expression analysis is being conducted using RNA-seq to elucidate the potential mechanisms underlying the efficacy of HDAC6 and SGLT2 inhibition by characterizing the pathway-level modulation by combination treatment compared to each therapy alone. Results of gene expression analysis comparing single-agent and combination activity are planned for inclusion at the time of presentation. Conclusion These studies demonstrate an additive benefit on diastolic dysfunction and elucidate key molecular mechanisms supporting the rationale for the potential use of HDAC6 inhibition as a single agent or in combination with SGLT2 inhibition for the treatment of HFpEF. HFpEF is a form of heart failure characterized by diastolic dysfunction and associated with high morbidity, mortality and significant unmet need. Previously, we have demonstrated that selective inhibition of histone deacetylase 6 (HDAC6) has positive effects on diastolic dysfunction and left ventricular thickness of the heart, as well as overall improvements in systemic inflammation and metabolism, in a mouse model of HFpEF using a high-fat diet (HFD) and L-NAME. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor approved by the FDA for HFpEF patients, works as expected in this model, confirming the potential clinical translatability of results seen with HDAC6 inhibitors. In head-to-head studies, the beneficial effects of HDAC6 inhibition have been shown to be comparable to empagliflozin, while demonstrating a distinct mechanism of action in gene expression analysis. TN-301, a highly selective HDAC6 inhibitor has been advanced into clinical development for the potential treatment of HFpEF. In this study, we sought to investigate the additive or synergistic effects of combining HDAC6 and SGLT2 inhibition to improve cardiac function in a two-hit mouse model of HFpEF. Low doses of TYA-018 (a highly selective HDAC6 inhibitor) and empagliflozin were co-administered in our HFpEF model. We then assessed functional measures and cardiac gene expression in hearts from treated and control HFpEF mice. In our mouse model of HFpEF, pharmacological inhibition of TYA-018 results in extensive cardiac functional and structural improvements, including diastolic dysfunction and LV mass. Co-administration of TYA-018 and empagliflozin resulted in additive cardiac functional and structural measures vs. the single agents. Of note, multiple measures of diastolic dysfunction (e.g., E/e’) were returned to baseline values by combination treatment in HFpEF mice similar to those in WT mice. Gene expression analysis is being conducted using RNA-seq to elucidate the potential mechanisms underlying the efficacy of HDAC6 and SGLT2 inhibition by characterizing the pathway-level modulation by combination treatment compared to each therapy alone. Results of gene expression analysis comparing single-agent and combination activity are planned for inclusion at the time of presentation. These studies demonstrate an additive benefit on diastolic dysfunction and elucidate key molecular mechanisms supporting the rationale for the potential use of HDAC6 inhibition as a single agent or in combination with SGLT2 inhibition for the treatment of HFpEF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐安琪完成签到,获得积分10
1秒前
小蘑菇应助深爱不疑采纳,获得200
1秒前
头发乱了完成签到,获得积分10
1秒前
1秒前
格兰兔米兔完成签到,获得积分10
1秒前
1秒前
1秒前
Luna完成签到 ,获得积分10
2秒前
汪鸡毛发布了新的文献求助10
2秒前
积极寻梅发布了新的文献求助10
3秒前
3秒前
tu发布了新的文献求助30
4秒前
在水一方应助云_123采纳,获得10
4秒前
科研小民工应助晚安采纳,获得50
4秒前
木木完成签到,获得积分10
4秒前
5秒前
5秒前
晨安完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
爆米花应助特兰克斯采纳,获得10
7秒前
8秒前
9秒前
9秒前
10秒前
葛辉辉发布了新的文献求助10
10秒前
10秒前
共享精神应助baobaonaixi采纳,获得10
10秒前
半颗橙子发布了新的文献求助10
10秒前
11秒前
shimmery完成签到,获得积分10
12秒前
咔咔完成签到 ,获得积分20
12秒前
superworm1发布了新的文献求助10
12秒前
12秒前
hy发布了新的文献求助10
12秒前
舒心赛凤完成签到,获得积分10
12秒前
菠菜菜str完成签到,获得积分10
14秒前
悟空发布了新的文献求助10
14秒前
优雅山柏发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762