Predicting hosts and cross-species transmission of Streptococcus agalactiae by interpretable machine learning

无乳链球菌 寄主(生物学) 随机森林 传输(电信) 计算机科学 人工智能 逻辑回归 基因组 机器学习 爆发 计算生物学 支持向量机 鉴定(生物学) 进化生物学 链球菌 生物 遗传学 基因 病毒学 生态学 细菌 电信
作者
Yunxiao Ren,Carmen Li,Dulmini Nanayakkara Sapugahawatte,Chendi Zhu,Sebastian Spänig,Dorota Jamrozy,Julian Rothen,Claudia Daubenberger,Stephen D. Bentley,Margaret Ip,Dominik Heider
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108185-108185
标识
DOI:10.1016/j.compbiomed.2024.108185
摘要

Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. Here, we developed three machine learning models—random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没用的三轮完成签到,获得积分10
5秒前
背书强完成签到 ,获得积分10
5秒前
方赫然应助科研通管家采纳,获得10
6秒前
小马甲应助咯咯咯采纳,获得10
7秒前
舒心的秋荷完成签到 ,获得积分10
8秒前
vvvaee完成签到 ,获得积分10
14秒前
marska完成签到,获得积分10
26秒前
Telomere完成签到 ,获得积分10
33秒前
快乐的完成签到 ,获得积分10
35秒前
沿途有你完成签到 ,获得积分10
54秒前
范玉平完成签到,获得积分10
55秒前
甜甜的问芙完成签到 ,获得积分10
57秒前
hua完成签到 ,获得积分10
1分钟前
reset完成签到 ,获得积分10
1分钟前
潇洒的书文完成签到,获得积分10
1分钟前
畅快的谷秋完成签到 ,获得积分10
1分钟前
Jonsnow完成签到 ,获得积分10
1分钟前
1分钟前
咯咯咯发布了新的文献求助10
1分钟前
玩命的无春完成签到 ,获得积分10
1分钟前
maclogos完成签到,获得积分10
1分钟前
蓝桉完成签到 ,获得积分10
2分钟前
isedu完成签到,获得积分10
2分钟前
Tonald Yang发布了新的文献求助10
2分钟前
seacnli完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
HJBF666完成签到 ,获得积分10
3分钟前
Tonald Yang发布了新的文献求助10
3分钟前
3分钟前
powwwop完成签到,获得积分20
3分钟前
powwwop发布了新的文献求助10
3分钟前
打鬼忍者完成签到 ,获得积分10
3分钟前
anran完成签到 ,获得积分10
3分钟前
风落完成签到 ,获得积分10
3分钟前
wwe完成签到,获得积分10
3分钟前
IngridX完成签到 ,获得积分10
3分钟前
简单的笑蓝完成签到 ,获得积分10
3分钟前
loren313完成签到,获得积分0
3分钟前
平常从蓉完成签到,获得积分10
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162359
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899783
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142