Predicting hosts and cross-species transmission of Streptococcus agalactiae by interpretable machine learning

无乳链球菌 寄主(生物学) 随机森林 传输(电信) 计算机科学 人工智能 逻辑回归 基因组 机器学习 爆发 计算生物学 支持向量机 鉴定(生物学) 进化生物学 链球菌 生物 遗传学 基因 病毒学 生态学 细菌 电信
作者
Yunxiao Ren,Carmen Li,Dulmini Nanayakkara Sapugahawatte,Chendi Zhu,Sebastian Spänig,Dorota Jamrozy,Julian Rothen,Claudia Daubenberger,Stephen D. Bentley,Margaret Ip,Dominik Heider
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108185-108185
标识
DOI:10.1016/j.compbiomed.2024.108185
摘要

Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. Here, we developed three machine learning models—random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰阔罗完成签到,获得积分10
刚刚
薄年完成签到,获得积分10
刚刚
datiancaihaha发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助xci采纳,获得10
2秒前
嘟嘟豆806发布了新的文献求助10
2秒前
科目三应助崽崽纯采纳,获得10
3秒前
香蕉觅云应助万1采纳,获得10
4秒前
4秒前
科目三应助科研小白鼠采纳,获得16
5秒前
5秒前
缓慢如南发布了新的文献求助10
6秒前
6秒前
腼腆的冷玉完成签到,获得积分10
7秒前
许丫丫完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
gxh发布了新的文献求助20
10秒前
星辰大海应助111采纳,获得10
12秒前
赘婿应助SKY采纳,获得10
12秒前
量子星尘发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
12秒前
June发布了新的文献求助10
12秒前
三方完成签到,获得积分10
13秒前
Jasper应助wa采纳,获得10
13秒前
yltstt完成签到,获得积分10
13秒前
13秒前
14秒前
Narcissus完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
Darling发布了新的文献求助10
16秒前
Rollei应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841