Predicting hosts and cross-species transmission of Streptococcus agalactiae by interpretable machine learning

无乳链球菌 寄主(生物学) 随机森林 传输(电信) 计算机科学 人工智能 逻辑回归 基因组 机器学习 爆发 计算生物学 支持向量机 鉴定(生物学) 进化生物学 链球菌 生物 遗传学 基因 病毒学 生态学 细菌 电信
作者
Yunxiao Ren,Carmen Li,Dulmini Nanayakkara Sapugahawatte,Chendi Zhu,Sebastian Spänig,Dorota Jamrozy,Julian Rothen,Claudia Daubenberger,Stephen D. Bentley,Margaret Ip,Dominik Heider
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108185-108185
标识
DOI:10.1016/j.compbiomed.2024.108185
摘要

Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. Here, we developed three machine learning models—random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助jiuwu采纳,获得10
刚刚
刚刚
lala完成签到,获得积分10
1秒前
return33完成签到,获得积分10
1秒前
2秒前
山竹炖鸡爪完成签到,获得积分10
2秒前
优雅凛完成签到,获得积分10
2秒前
3秒前
田様应助yy采纳,获得30
3秒前
3秒前
4秒前
rammy完成签到,获得积分10
4秒前
yueyueyue完成签到,获得积分10
4秒前
Zing发布了新的文献求助10
5秒前
脑洞疼应助julienCCC采纳,获得10
5秒前
5秒前
HHHHH完成签到,获得积分10
7秒前
大方雪卉完成签到,获得积分10
7秒前
xsad完成签到,获得积分10
7秒前
7秒前
zhanghao发布了新的文献求助10
8秒前
科研通AI2S应助甜椒采纳,获得10
8秒前
龅牙苏完成签到,获得积分10
9秒前
打打应助认真的寒香采纳,获得10
9秒前
10秒前
xxxxx炒菜发布了新的文献求助10
10秒前
web123完成签到,获得积分10
10秒前
浅呀呀呀完成签到 ,获得积分10
11秒前
汉堡包应助青mu采纳,获得10
11秒前
花花完成签到 ,获得积分10
11秒前
优雅凛发布了新的文献求助10
12秒前
大聪明应助友好的牛排采纳,获得10
12秒前
刘阳完成签到,获得积分10
12秒前
今后应助Zing采纳,获得10
12秒前
JQKing完成签到 ,获得积分10
12秒前
13秒前
13秒前
ala完成签到,获得积分10
13秒前
最棒哒发布了新的文献求助10
13秒前
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338621
求助须知:如何正确求助?哪些是违规求助? 4475739
关于积分的说明 13929215
捐赠科研通 4370994
什么是DOI,文献DOI怎么找? 2401582
邀请新用户注册赠送积分活动 1394626
关于科研通互助平台的介绍 1366445