Predicting hosts and cross-species transmission of Streptococcus agalactiae by interpretable machine learning

无乳链球菌 寄主(生物学) 随机森林 传输(电信) 计算机科学 人工智能 逻辑回归 基因组 机器学习 爆发 计算生物学 支持向量机 鉴定(生物学) 进化生物学 链球菌 生物 遗传学 基因 病毒学 生态学 细菌 电信
作者
Yunxiao Ren,Carmen Li,Dulmini Nanayakkara Sapugahawatte,Chendi Zhu,Sebastian Spänig,Dorota Jamrozy,Julian Rothen,Claudia Daubenberger,Stephen D. Bentley,Margaret Ip,Dominik Heider
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108185-108185
标识
DOI:10.1016/j.compbiomed.2024.108185
摘要

Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. Here, we developed three machine learning models—random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝴蝶鱼发布了新的文献求助10
1秒前
dawn完成签到,获得积分10
1秒前
diong完成签到,获得积分20
1秒前
yee完成签到,获得积分10
1秒前
饼干完成签到,获得积分10
1秒前
烈火凤凰完成签到,获得积分10
2秒前
2秒前
CipherSage应助酷酷的水杯采纳,获得10
2秒前
leey发布了新的文献求助10
3秒前
yohsama发布了新的文献求助10
3秒前
脑洞疼应助jia采纳,获得10
3秒前
3秒前
4秒前
晴天小土豆完成签到 ,获得积分10
4秒前
4秒前
王强完成签到,获得积分10
5秒前
5秒前
李健应助William采纳,获得10
5秒前
积极的邪欢完成签到,获得积分10
5秒前
二十二应助御风采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
萌&完成签到,获得积分10
6秒前
kento给鱿鱼的求助进行了留言
6秒前
7秒前
7秒前
7秒前
8秒前
刘47发布了新的文献求助10
8秒前
皮蛋solo粥完成签到,获得积分20
8秒前
称心的猫咪完成签到,获得积分10
9秒前
Owen应助Lorain采纳,获得10
9秒前
机灵语雪完成签到,获得积分10
9秒前
10秒前
jia完成签到,获得积分20
10秒前
Xu完成签到,获得积分20
11秒前
Lumos发布了新的文献求助10
11秒前
11秒前
11秒前
白开水发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709862
求助须知:如何正确求助?哪些是违规求助? 5196870
关于积分的说明 15258745
捐赠科研通 4862555
什么是DOI,文献DOI怎么找? 2610161
邀请新用户注册赠送积分活动 1560499
关于科研通互助平台的介绍 1518208