Predicting hosts and cross-species transmission of Streptococcus agalactiae by interpretable machine learning

无乳链球菌 寄主(生物学) 随机森林 传输(电信) 计算机科学 人工智能 逻辑回归 基因组 机器学习 爆发 计算生物学 支持向量机 鉴定(生物学) 进化生物学 链球菌 生物 遗传学 基因 病毒学 生态学 细菌 电信
作者
Yunxiao Ren,Carmen Li,Dulmini Nanayakkara Sapugahawatte,Chendi Zhu,Sebastian Spänig,Dorota Jamrozy,Julian Rothen,Claudia Daubenberger,Stephen D. Bentley,Margaret Ip,Dominik Heider
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 108185-108185
标识
DOI:10.1016/j.compbiomed.2024.108185
摘要

Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. Here, we developed three machine learning models—random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安玖完成签到,获得积分10
刚刚
dyh6802发布了新的文献求助10
1秒前
拉长的忆南完成签到,获得积分10
2秒前
镜哥完成签到,获得积分10
2秒前
garyaa完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
17完成签到,获得积分10
3秒前
今后应助冷静的毛豆采纳,获得20
3秒前
3秒前
小马哥36发布了新的文献求助10
3秒前
ttttttuu发布了新的文献求助10
3秒前
甜美的秋凌完成签到,获得积分10
4秒前
10发布了新的文献求助10
5秒前
高高完成签到 ,获得积分10
5秒前
AAAAAAAAAAA发布了新的文献求助10
5秒前
6秒前
wxaaaa完成签到,获得积分10
6秒前
李爱国应助dd采纳,获得10
7秒前
8秒前
Jasper应助感性的凉面采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
情怀应助顺顺采纳,获得10
11秒前
garyaa发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助奔奔采纳,获得10
11秒前
Orange应助Clean采纳,获得10
12秒前
Lucas应助ww采纳,获得10
12秒前
13秒前
ttttttuu完成签到,获得积分10
13秒前
14秒前
刘涵完成签到 ,获得积分10
14秒前
小马甲应助zhui采纳,获得10
14秒前
10完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794