Counterion Engineering toward High-Performance and pH-Neutral Polyoxometalates-Based Hole-Transporting Materials for Efficient Organic Optoelectronic Devices

反离子 材料科学 质子化 X射线光电子能谱 化学工程 能量转换效率 纳米技术 光电子学 化学 离子 有机化学 工程类
作者
Luxin Feng,Zhe Li,Yuchao Liu,Lei Hua,Zhengrong Wei,Yuan Cheng,Zhiguo Zhang,Bowei Xu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (4): 3276-3285 被引量:3
标识
DOI:10.1021/acsnano.3c09865
摘要

Although protonated polyoxometalates (POMs) are promising hole-transporting layer (HTL) materials for optoelectronic devices owing to their excellent hole collection/injection property, pH neutrality, and noncorrosiveness, POMs are seldom used as high-performance HTL materials. Herein, we designed and synthesized a series of mixed-additive POMs with pH-neutral counterions (NH4+, K+, and Na+) as HTL materials. X-ray photoelectron spectroscopy and single-crystal X-ray analyses indicated that the use of the lacunary heteropolyanion [P2W15O56]12– as an intermediate ensured successful incorporation of the counterions into the mixed-addenda POMs without causing deterioration of the POM frameworks. The hole-transporting layer performance of POM–NH4, which was characterized by a high work function and good conductivity and could be prepared using a low-cost method surpassed those of its protonated counterpart POM-4 and many classic HTL materials. An organic solar cell (OSC) modified with POM–NH4 delivered a power conversion efficiency of 18.0%, which was the highest photovoltaic efficiency achieved by POM-based OSCs to date. Moreover, an HTL material based on POM–NH4 reduced the turn-on voltage of an organic light-emitting diode from 4.2 to 3.2 V. The results of this study suggest that POMs are promising alternatives to the classic HTL materials owing to their excellent hole-collection ability, low costs, neutral nature, and high-chemical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
熠熠完成签到,获得积分10
2秒前
wangping发布了新的文献求助10
2秒前
李爱国应助小豆芽儿采纳,获得10
2秒前
3秒前
3秒前
FFF完成签到,获得积分20
4秒前
学术小黄完成签到,获得积分10
4秒前
么系么系发布了新的文献求助10
4秒前
5秒前
小洪俊熙完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
SYLH应助di采纳,获得10
6秒前
6秒前
柒毛完成签到 ,获得积分10
7秒前
搜集达人应助tatata采纳,获得20
7秒前
英俊的铭应助诚c采纳,获得10
7秒前
兔子完成签到 ,获得积分10
7秒前
7秒前
苹果巧蕊完成签到 ,获得积分10
7秒前
脑洞疼应助SDS采纳,获得10
7秒前
JamesPei应助Guo采纳,获得20
8秒前
马保国123完成签到,获得积分10
8秒前
8秒前
8秒前
迷你的冰巧完成签到,获得积分10
8秒前
万能图书馆应助学术蝗虫采纳,获得10
9秒前
慕青应助aurora采纳,获得30
9秒前
Jasper应助满意的盼夏采纳,获得10
9秒前
yitang完成签到,获得积分10
11秒前
www完成签到,获得积分10
11秒前
zhenzhen发布了新的文献求助10
11秒前
飞羽发布了新的文献求助10
11秒前
江沅完成签到 ,获得积分10
11秒前
12秒前
12秒前
Sean完成签到,获得积分10
12秒前
兜兜完成签到 ,获得积分10
12秒前
羊羊羊发布了新的文献求助10
13秒前
Rui完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678