GPR18
炎症
细胞生物学
癌症研究
髓样
受体
免疫学
生物
医学
内科学
大麻素受体
兴奋剂
作者
Paolo Bellotti,Zachary Ladd,Victoria Leroy,Gang Su,Shiven Sharma,Joseph B. Hartman,Jonathan R. Krebs,Chelsea Viscardi,Robert Maile,Lyle L. Moldawer,Phillip A. Efron,Ashish K. Sharma,Gilbert R. Upchurch
标识
DOI:10.1101/2024.02.23.581672
摘要
ABSTRACT Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized proresolving lipid mediators, via G-protein coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls. Furthermore, using an established murine model of AAA in C57BL/6 (WT) mice, we observed that treatment with RvD2 significantly attenuated aortic diameter, pro-inflammatory cytokine production, immune cell infiltration (neutrophils and macrophages), elastic fiber disruption and increased smooth muscle cell α-actin expression as well as increased TGF-β2 and IL-10 expressions compared to untreated mice. Moreover, the RvD2-mediated protection from vascular remodeling and AAA formation was blocked when mice were previously treated with siRNA for GPR18 signifying the importance of RvD2/GPR18 signaling in vascular inflammation. Mechanistically, RvD2-mediated protection significantly enhanced infiltration and activation of monocytic myeloid-derived suppressor cells (M-MDSCs) by increasing TGF-β2 and IL-10 secretions that mitigated smooth muscle cell activation in a GPR18-dependent manner to attenuate aortic inflammation and vascular remodeling via this intercellular crosstalk. Collectively, this study demonstrates RvD2 treatment induces an expansion of myeloid-lineage committed progenitors, such as M-MDSCs, and activates GPR18-dependent signaling to enhance TGF-β2 and IL-10 secretion that contributes to resolution of aortic inflammation and remodeling during AAA formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI