化学
电解质
催化作用
吸附
动力学
电极
铂金
动能
无机化学
化学物理
有机化学
物理化学
物理
量子力学
作者
Akansha Goyal,Sheena Louisia,Pricilla Moerland,Marc T. M. Koper
摘要
The kinetics of hydrogen evolution reaction (HER) in alkaline media, a reaction central to alkaline water electrolyzers, is not accurately captured by traditional adsorption-based activity descriptors. As a result, the exact mechanism and the main driving force for the water reduction or HER rate remain hotly debated. Here, we perform extensive kinetic measurements on the pH- and cation-dependent HER rate on Pt single-crystal electrodes in alkaline conditions. We find that cations interacting with Pt step sites control the HER activity, while they interact only weakly with Pt(111) and Pt(100) terraces and, therefore, cations do not affect HER kinetics on terrace sites. This is reflected by divergent activity trends as a function of pH as well as cation concentration on stepped Pt surfaces vs Pt surfaces that do not feature steps, such as Pt(111). We show that HER activity can be optimized by rationally tuning these step–cation interactions via selective adatom deposition at the steps and by choosing an optimal electrolyte composition. Our work shows that the catalyst and the electrolyte must be tailored in conjunction to achieve the highest possible HER activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI