Imbalanced credit card fraud detection data: A solution based on hybrid neural network and clustering-based undersampling technique

欠采样 计算机科学 信用卡诈骗 数据库事务 聚类分析 信用卡 交易数据 机器学习 班级(哲学) 人工智能 人工神经网络 数据挖掘 数据库 万维网 付款
作者
Huajie Huang,Lei Zhu,Xiaoyu Xue,Jiuxin Cao,Xinyi Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:154: 111368-111368 被引量:4
标识
DOI:10.1016/j.asoc.2024.111368
摘要

With the economy rapid development, the credit card business enjoys sustained growth, which leads to the frauds happen frequently. Recent years, the intelligence technology has been applied in fraud detection, but they still leave huge potential to improve reliability. Most of the existing researches designed the model only related to transaction information; however, the user's background information and economy status may be helpful to find abnormal behavior. In view of this, we extract valuable features about individual and transaction information, which can reflect personal background and economic status. Meanwhile, in order to solve the problem of fraud detection and imbalanced class, we innovatively construct a fraud detect framework by learning user features and transaction features, which uses a hybrid neural network with a clustering-based undersampling technique on identity and transaction features (HNN-CUHIT). To test the performance of the HNN-CUHIT in credit card fraud detection, we use a real dataset from a city bank during SARS-CoV2 in 2020 to conduct the experiments. In the imbalanced class problem, the experimental result indicates that the ratio of the number of the normal and fraud classes is 1:1 and then the model performance is optimal, while the F1-score is 0.0572 in HNN-CUHIT and is 0.0454 in CNN by ROS. In the fraud detection experiment, the F1-score is 0.0416 in HNN-CUHIT, getting the best performance, while it is 0.0360, 0.0284 and 0.0396 respectively in LR, RF and CNN. According to experimental results, the HNN-CUHIT performs better than other machine learning models in imbalanced class solutions and fraud detection. Our work provides a new approach to detect credit card fraud in the finance field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen发布了新的文献求助10
1秒前
Bearbiscuit发布了新的文献求助10
1秒前
hello发布了新的文献求助10
2秒前
2秒前
3秒前
陶火桃发布了新的文献求助10
3秒前
芈钥完成签到 ,获得积分10
3秒前
jwu发布了新的文献求助10
4秒前
啊哈完成签到,获得积分10
5秒前
胡萝卜icc发布了新的文献求助10
6秒前
8秒前
我是老大应助liweiDr采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
10秒前
苏卿应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
良辰应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
毛豆爸爸应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
毛豆爸爸应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
环糊精发布了新的文献求助10
13秒前
胡萝卜icc完成签到,获得积分10
14秒前
所所应助103921wjk采纳,获得10
15秒前
16秒前
斯文败类应助视野胤采纳,获得10
17秒前
Hello应助天意采纳,获得10
18秒前
小马甲应助凛雪鸦采纳,获得10
19秒前
怡然南松完成签到,获得积分10
20秒前
反对法v的发布了新的文献求助10
21秒前
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139285
求助须知:如何正确求助?哪些是违规求助? 2790137
关于积分的说明 7794105
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301261
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109