Imbalanced credit card fraud detection data: A solution based on hybrid neural network and clustering-based undersampling technique

欠采样 计算机科学 信用卡诈骗 数据库事务 聚类分析 信用卡 交易数据 机器学习 班级(哲学) 人工智能 人工神经网络 数据挖掘 数据库 万维网 付款
作者
Huajie Huang,Lei Zhu,Xiaoyu Xue,Jiuxin Cao,Xinyi Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:154: 111368-111368 被引量:4
标识
DOI:10.1016/j.asoc.2024.111368
摘要

With the economy rapid development, the credit card business enjoys sustained growth, which leads to the frauds happen frequently. Recent years, the intelligence technology has been applied in fraud detection, but they still leave huge potential to improve reliability. Most of the existing researches designed the model only related to transaction information; however, the user's background information and economy status may be helpful to find abnormal behavior. In view of this, we extract valuable features about individual and transaction information, which can reflect personal background and economic status. Meanwhile, in order to solve the problem of fraud detection and imbalanced class, we innovatively construct a fraud detect framework by learning user features and transaction features, which uses a hybrid neural network with a clustering-based undersampling technique on identity and transaction features (HNN-CUHIT). To test the performance of the HNN-CUHIT in credit card fraud detection, we use a real dataset from a city bank during SARS-CoV2 in 2020 to conduct the experiments. In the imbalanced class problem, the experimental result indicates that the ratio of the number of the normal and fraud classes is 1:1 and then the model performance is optimal, while the F1-score is 0.0572 in HNN-CUHIT and is 0.0454 in CNN by ROS. In the fraud detection experiment, the F1-score is 0.0416 in HNN-CUHIT, getting the best performance, while it is 0.0360, 0.0284 and 0.0396 respectively in LR, RF and CNN. According to experimental results, the HNN-CUHIT performs better than other machine learning models in imbalanced class solutions and fraud detection. Our work provides a new approach to detect credit card fraud in the finance field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助牛文文采纳,获得10
1秒前
5秒前
冷艳的道天完成签到 ,获得积分10
5秒前
7秒前
李健的小迷弟应助临澈采纳,获得10
7秒前
果酱的奥特曼完成签到,获得积分10
8秒前
隐形曼青应助岳凯采纳,获得10
9秒前
DE2022发布了新的文献求助10
10秒前
Winter完成签到,获得积分10
10秒前
風声鶴唳完成签到,获得积分10
11秒前
风清扬应助hefang采纳,获得10
11秒前
科目三应助hefang采纳,获得10
11秒前
李健的小迷弟应助李李李采纳,获得10
12秒前
Sun关注了科研通微信公众号
12秒前
丹妮发布了新的文献求助10
13秒前
qqqq完成签到,获得积分20
15秒前
17秒前
zho应助牛文文采纳,获得10
18秒前
英俊的铭应助qqqq采纳,获得10
20秒前
生动路人应助王博林采纳,获得30
20秒前
風声鶴唳发布了新的文献求助10
22秒前
22秒前
罗淑茵完成签到,获得积分10
26秒前
27秒前
27秒前
啦啦啦啦发布了新的文献求助10
28秒前
ty-完成签到,获得积分10
32秒前
张麟钰关注了科研通微信公众号
35秒前
由道罡发布了新的文献求助10
36秒前
albite发布了新的文献求助30
39秒前
宋笨笨完成签到 ,获得积分10
40秒前
nie发布了新的文献求助30
41秒前
天边发布了新的文献求助10
41秒前
faefasfae完成签到,获得积分10
42秒前
IU冰冰发布了新的文献求助10
43秒前
hang完成签到,获得积分10
44秒前
Debrolie完成签到,获得积分10
45秒前
45秒前
由道罡完成签到,获得积分10
46秒前
KeLiang完成签到,获得积分10
48秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652