亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Very high‐cycle fatigue life prediction of high‐strength steel based on machine learning

梯度升压 随机森林 Boosting(机器学习) 高强度钢 结构工程 疲劳极限 相关系数 灵敏度(控制系统) 材料科学 工程类 数学 人工智能 机器学习 计算机科学 电子工程
作者
Xiaolong Liu,Siyuan Zhang,Tao Cong,Zeng Fan,Xi Wang,Wenjing Wang
出处
期刊:Fatigue & Fracture of Engineering Materials & Structures [Wiley]
卷期号:47 (3): 1024-1035 被引量:8
标识
DOI:10.1111/ffe.14213
摘要

Abstract Very high‐cycle fatigue life (VHCF) prediction of high‐strength steel based on machine learning (ML) was investigated in this paper. First, a total of 173 sets of experimental data on the VHCF of high‐strength steel were collected to train the ML model. The sensitivity coefficient analysis indicated that inclusion size and maximum stress were the strongest correlation parameters with fatigue life and selected as the input features for the final model training. The S–N curve predicted by the obtained ML model closely aligns with the actual S–N curve. Among the three algorithm models, namely, random forest, XG boost, and gradient boosting, the gradient boosting model exhibited superior performance and achieved the highest accuracy in predicting the VHCF life of high‐strength steel. A comparison between the Murakami model and the gradient boosting model was conducted. It is indicated that ML exhibits superior predictive performance with high efficiency and excellent accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助读书的时候采纳,获得10
4秒前
木木夕发布了新的文献求助10
8秒前
17秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
18秒前
21秒前
科研通AI5应助读书的时候采纳,获得10
22秒前
木木夕完成签到,获得积分10
22秒前
27秒前
科研通AI5应助读书的时候采纳,获得10
40秒前
科研通AI5应助读书的时候采纳,获得10
59秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
1分钟前
传奇3应助读书的时候采纳,获得10
1分钟前
科研通AI5应助Blackrose2412采纳,获得10
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
千里草完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
幸运的姜姜完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935426
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058843
捐赠科研通 3977788
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107387